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Abstract 

The paper concerns interesting problems related to the field of Complex Analy­
sis, in particular, Nevanlinna theory of meromorphic functions and applications. 
We prove some new normal criterias for family of meromorphic functions con­
cermng the normality criteria due to Pang and Zalcman [2], Our main result is 
stated: Let a be nonzero complex value and n > 2 be a positive integer, and let 
Til,.. .,nfc_i be nonnegative integers, Uk be positive integer {k > 1). Let The a 
family of meromorphic functions in a complex domain D all of whose zeros have 
multiplicity at least k such that E; = {z : /"(z) (/')"'(•s) • • • {f'-''^T''{z)-a - 0} 
has at most one point in D, for every f ^ T. Then ^ is a normal family. In 
our best knowledge, it is a new result which is supplement the result of Pang-
Zalcman in this trend. 

Keywords: entire function, meromorphic function, normal family, Nevanlinna 
theory, Zalcman's Lemma. 

1 Introduction 

Let D be a domain in the complex plane C 
ajid J" be a family of meromorphic func­
tions in D. The family T is said to be 
normal in D, in the sense of Montel, if 
for any sequence {/„} C T, there exists 
a subsequence {/„,} such that {/„,} con­
verges spherically locally imiformly in D, 
to a meromorphic function or oo. 

In 1999, Pang and Zalcman [2] proved the 
normality criteria as follows: 

Theorem 1. Let n and k be natural num­
bers andJ^ be a family of holomorphic func­
tions in a domain D all of whose zeros 
have multiplicity at least k. Assum.e that 
fnt{k) _ 1 ig non-vanishing for each f €. J^. 
Then T is normal in D. 

The main purpose of this paper is to estab­
lish some normality criterias for the case 
of meromorphic functions in above result. 
Namely, we prove 

Theorem 2. Let a be nonzero complex 
value and n > 2 be a positive integer, and 
letni,...,Uk-i be nonnegative integers, rik 
be positive integer (k > I). Let T be a 
family of meromorphic functions in a com­
plex domain D all of whose zeros have mul­
tiplicity at least k such that Ef = {z : 
r(z){fr^{z) • • • (/(*1)«{2) - a = 0} has 
at most one point in D, for every f ^ F. 
Then T is a normal family. 

In Theorem 2, if Ef = 0 , this means 
/" ( / ' ) " ' • • • ( / '*^ ' r ' / 0., then we obtain 
the following result. 
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Corollary 1. Let a be nonzero complex 
value and n > 2 be a positive integer, 
and let m , . . . ,Tifc_i be nonnegative inte­
gers, Uk be positive integer (k > 1). Let 
IF be a family of meromorphic functions 
in a complex domain D all of whose ze­
ros have multiplicity at least k such that 
/"( / ' )"^---( / ' ' ' ' )"^ ^ a in D for every 
f €. J^- Then T is a normal family. 

In Corollary 1, taking Uj = 0,j = 1,... ,k— 
1, Uk = 1, we get 

Corollary 2. Lei a be nonzero complex 
value and k,n>2 are positive integer. Let 
T be a family of meromorphic functions in 
a complex domain D all of whose zeros have 
multiplicity at least k such that f^f^^^ — a 
is non-vanishing for every f E J^. Then T 
is a normal family. 

Lemma 2 ([1]). Let g be a entire funcUo^^ 
and M is a positive constant. Ifg^iO ^ ^ 
for all ̂  e C, then g has order at most one. 

Remark 3. In Lemma 1, if J" is a fam­
ily of holomorphic functions, then by Hur-
witz theorem, 5 is a holomorphic function. 
Therefore, by Lemma 2, the order of g is 
not greater than 1. 

Lemjtna 3. Let f be a non-constant ratio­
nal function on the complex plane, and let 
k be a positive integer. Assume that all of 
zeros of f have multivlicity at least k. We 
consitier'a nonzero complex number a anti 
nonnegative integers n,ni,..., n^ satisfy­
ing ni H h wjt > 1 o"<̂  n>2. Then the 
equation 

/ " ( / ' ) " • • • • ( / ' " ) " ' - 0 = 0 

has at least two distinct roots. 

2 Lemma 

In order to prove Theorem 2, we need the 
following lemmas: 

Lemma 1 (Zalcman's Lemma, [4]). Let T 
be a family of meromorphic functions de­
fined in the unit disc D satisfying all ze­
ros of functions in T having multiplicity at 
least p, and all poles at least q. Let ex be real 
number satisfying —p<a<q. Then, T is 
not normal at ZQ if and only if there exist 
(i) a number 0 < r < 1; 
(ii) points Zn with jz l̂ < r, z^—^ ZQ; 
(Hi) functions /„ 6 7^; 
(iv) positive numbers pn —* 0"*",' 
such that gn{^) = p^fni^n + PnO "> 9(0 
locally uniformly with respect to the spheri­
cal metric, where g is a nonconstant mero­
morphic function on C, all of whose zeros 
and poles have multiplicity at least p, q re­
spectively. Moreover, g has order at most 

Proof. We distinguish two cases. 

Case 1. / is a polynomial. Since all ze­
ros of / have multiplicity at least k, we get 
that the polynomial r ( / ' ) " ' - ( / ^ ' " ' ) "* " 
a hsLS degree at least 2. Suppose that 
f^if'P • • • (Z''^))"' - a has unique zero ZQ. 
We have 

r w ( / w r •••(/"•'wr-" 
= A(z~zo)'> t>2,AjtO. (2.1) 

This implies, 

( /"W(/ '{^))" '•••( /<"«)"' ) ' 
= At{z-zo)'-^ 

Hence, the function ( /" ( / ' ) " ' • • • (/ ' ' ')"»)' 
has unique zero zo- On the other hand, 
since n > 2, we have that a zero of / is aJso 
a zero of (/"{/ ')" ' • • • (/<*')"')'• Hence, the 
polynomial / has unique zero zo- This is 
impossible, by (2.1) and by the fact that 
o # 0 . 
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Hence, the equation f"'{f'Y'^ • • • (/C''))'^'' - Hence 
o = 0 has at least two distinct roots, in this 
case. 

Case 2. / is not a polynomial. 

Since, / is a rational function with all zeros 
having multipUcity at least k, we caji write 

/ = -4-
(z - a i ) "" (z - a ; ) " ' . . . (z - £..)"•• 

(z-ft)'i>{z-ft)*...(z-A)''. ' 
(2.2) 

where the integers s,t can be zero, and 
mi > k. 

Set JW = mi-\- • --{-ms, N ^ di-\- • -f-d( > t, 
(iW = 0, if s = 0, and Af = 0 if t = 0). Then 
JW > sfc, and Af > t. 

We have 

nz)=A' 

and 

m-i(^-°t)"' 
n! . i (^-«" ' 

(J = l,...,k) 

{r{z){f\z)r...(f'-''\z))''-)' 
^ „ (n+En,)m,-E»jJ-l 

_ n.- i (̂  - ai) ' - ' ' 

nLi(^-A) 
(»+E",)J<+i;%i+l 

-Sl(2), 

(2.5) 

where deggi < {Y, inj + l){s + t-l). 

») Suppose ttoi / " ( / ' ) " ' . . . ( / '* ' ) " ' - a = 0 
ftcs UTiigue zero ZQ. 

Then, we can write 

r(^){/'(2))"'-'-(/'"(^))"' 

nki(^-A) 

where B j^O, a; / zo. 

(2.3) Then 

(n+E ",)•'.+E",3 

(2.6) 

where gj{z) is a polynomial with deggj < 
j{s + t-l). Therefore, 

r(z)(/'(z))"'...(/W(^))"' 

• C (^ ) ' 
(2.4) 

where g{z) = >!»+"'+••+"'D » j ' (^). 

< ieg9<( i ; jn j ) (» + ' - l ) -

( r (2 ) ( / ' ( ^ ) ) " ' ' - - ( / ' " (2 ) ) " ' ) ' 

_ (Z - Zo)'~'g2(z) 

nfei(^-A) 
(r.+ En,)ii,+ Ei.,j+I 

(2.7) 

where 92(3) S(i - (n + £ nj.)JV -

( E i " 3 ) t ) ^ ' + i i i - i 2 " + ••• + 60; and 
3 = 1 

bo,..., bt-i are constants. 

Subcase 1. i / ( « + E ' ' j ) ' > ' + ( E jn,)(. 

Then, from (2.4) and (2.6), we have 
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' > deg Q. Hence, 

(n + 53"i)^ - (53^%)^ + '^S 
1=1 3-1 

i - 1 3=1 

On the other hand, 

d e g 9 < ( 5 ^ j n j . ) ( s - l - t - l ) . 
3 = 1 

{n+J2"i')'^- (12J"J> 
3 = 1 3 - 1 

k 

+ iY,m){s + t-i) 
3 - 1 

k k 

>{n+Y,^j)N + {J2jnj)t. 
3 = 1 3 = 1 

{n + J2",W <{^3nj + l)s+t 
3 = 1 3 - 1 

< ( E J " 3 + I ) T + ^ 
3 - 1 " 

k , 

< ( E " 3 ) « + (n-T:)Af 
3 - 1 * 

< (Tl + E"3)Af . 
3 = 1 

This is a contradiction. 

Subcase 2.l = (n+'£n,)N + (Y^m)t. 
3 = 1 3 - 1 

If M > Af, then by an argument similar to 
the last part of Subase 1, we get a contra­
diction. Hence, M < N. 

Since zo 7̂  aj (j = 1 , . . . , s) therefore, by 
(2.5) and (2.7) we have 

k 

i - 1 < degsi < (^jn, -H)(s -I-1 - 1). 
3 = 1 

Then, M > N. 

From (2.5) and (2.7), we have 

J, (n-tE%)m,-E„,3-l 
1 1 ( 2 - 0 . ) ' • ' ' • ' 91(2) 
i-1 
= (2-Zo)'-'92(z). 

Therefore, since zo 5̂  Qi,i — l , . . . , s and 
deg92 = i, we have 

(" + E "3)Af - ( E m + i)s < (. 
3 = 1 3 = 1 

ln + J2r'i)N^l-(^jn,)t 
3 - 1 3 - 1 

k 

<deggi + l-(^jnj)t 
3 - 1 

k k 

< ( E J " 3 + i)(s+t -1) +1 - (Y,m)* 
3 = 1 3 = 1 

fe , , k 

< ( E ^ " j ) * + ' + ' ^ T r £ ^ ' ' ' 3 + i) + '^ 
3 = 1 " 3 - 1 

2 f E ^"3+1)+-^f £ ( " + E "j)^-
3 = 1 3 - 1 

This is a contradiction. 
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*) Suppose that / " ( / ' ) " ' . . . (/<")"' - o = 0 
is nowhere vanishing. 
Then 

/"(2)(/'(z))»'...(/W(z))"' = ^ 

(»-l-E»jM«-FE»33 
nLi(2-ft) '-' 

(2.8) 

where B is a non-zero constant. 

Hence, degP = deg (p. Therefore, by (2.4) 

k k 

M{n-\-'^nj) -sY^jnj-\-degg 

k k 

^N{n + Y^nj)-\-tY,3nj 
3=1 j = l 

On the other hand, 

d e g 9 < ( E j " 3 ) ( » + « - l ) -

Therefore, 

fe 

J2m 
M>N+-^=\ . 

" + E " 3 
3 = 1 

Then, M > N. 
By (2.8), we have 

( r (2){/ ' (z ) )" ' - - - ( /W(2))" ' ) ' 
-B93(2) 

,-n 

(2.9) 

where 
it k 

93(2) = {(n + I I " j ) ^ + « E - ? ' " i > ' " ' 

deg53 = ( - 1, and bi € C. 

From (2.5) and (2.9), we have 

k k 

{n + Y,^iW - {^ + Yljnj> 
3=1 3=1 

< d e g 9 3 = ( - l . 

{n + J2^3W < (1 + Y.3nj)s + t - l 

This is a contradiction. We have completed 
the proof of Lemma 3. D 

Lemma 4 ([3]). Let f be a transcenden­
tal meromorphic function on the complex 
plane, and a^Q be a complex number. As­
sume that n > 2 ,m, • • • ,nk are nonnegative 
integers such that ni-\- 1- n.̂  > 1. Then 
the equation 

/ " ( / ' ) " ' . • • ( / < " ) " ' - " = 0 

has infinitely roots. 

3 P r o o f o f T h e o r e m 2 

Proof of Theorem 2. Without loss the gen­
erality, we may asssume that D is the unit 
disc. Suppose that T is not normal at ZQ G 

"+5:Li' 
exist 

1) a real number r, 0 < r < 1, 

2) points 2^, |2„| <r, Zy^ ZQ, 

3) positive numbers pv,p.o -^ O"*", 
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• 9(«) (3.1) 

4) functions /„, fv^T 

such that 

spherically uniformly on compact . 
of C, where g{l^) is a non-constant mero­
morphic function all of whose zeros have 
multiplicity at least fe and g^{^) ^ g*(0) = 
1. 

On the other hand, 

. M,,,^„, _ „Uz. + p,e.) 
(s?'(0)"' = ((- )W)"' 

for all J = 1, . . . , fc. Therefore, by the defi­
nition of a and by (3.1), we have 

/."(2i, + M) ( /^ )" ' (2 . - fM) 

•••(4'>)"''(2„ + ft0 

-=9."{«)(s;{«))"'... («?'(«))"' 

^ 9 " ( 0 ( s ' ( 0 ) " ' . . . ( 9 " = ' ( 0 ) " ' (3.2) 
spherically uniformly on compact sub­
sets of C \ P, where P denotes 
by the set of poles of g. We have 
9"(e){a'(0)"^---{5f'>(ar ^ «• Indeed, 
if 

5 " ( 0 ( 5 ' ( 0 r . . . { s ' ' H 0 r = a - (3-3) 

Then g is a nonconstant entire func­
tion with order at most one. By Lemma 
2, we get g(X) ^ ce''^, where d ^ 
0. This contradicts with (3.3). From 
(3.2) and Hurwtiz's theorem, we see that 
?"{0(9'{0)"^ • • • {g^^KOT'-''^^^ at most 
one zero. This is a contradiction with 
Lemma 4 and Lemma 3. Hence, J" is a nor­
mal family. • 
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Summary 
M O T S O TIEU C H U A N C H U A N TAC M 6 I CHO HO CAC HAM PHAN 

HINH LIEN QUAN D £ N KET QUA CUA PANG-ZALCMAN 

Biii Thi Ki6u Oanh*, DiTdng Ngoc Phifcftig, Ngo Thi Thu ThOy 

Cao Ddng Su Phgm Thai Nguyen 

Bai bao quan tam d̂ n nhOng linh v^Jc thu vi trong giSi tfch phiic: Lj- thuyet Nevanlinna vk Ho 
chu^ t ^ Chting tei chiing minh m6t s6 tigu chuin chuin tic m(3i cho ho che hhm phan hinh liSn 
quan d̂ n tiSu chuin chuin tic cda Pang-Zalcman [2]. Kit qu& chinh cua chung tOi dugc phit bilu 
nhil sau: Cho a Ih s6 phiJc khac khong v^ n > 2 1̂  s6 nguygn diTOng, n i , . . . , Uk-i Ih c&c s6 nguySn 
khong am vh-n^ \h s6 nguyfin duang {k>l). Cho F Ik hp c6c ĥ im phan hinh tren miln D mk mpi 
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khSng diem c6 b6i ft n h i t fc ma £•/ = {z : / " ( « ) ( / ' ) " ' W ••• (/ ' ' ' ' )"*(2) - a = _̂0} chiia nhieu nhat 
mOt diem trong D vdi mpi f & F. Khi d6 ho F chuin t i c tren D. Ttong hi6u bi^t t6t nhi t cua 
chung toi, day la ki t quS. mcft b6 sung cho kit qua cua Pang-Zalcman. 
Tii khda: Ham nguyin. Ham phan hinh, Ho chudn tdc, LjJ thuyit Nevanlinna, Bd de Zalcman. 
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