SOME NEW NORMALITY CRITERIAS FOR FAMILY OF MEROMORPHIC FUNCTIONS CONCERNING THE RESULT OF PANG-ZALCMAN

Bui Thi Kieu Oanh*, Duong Ngoc Phuong, Ngo Thi Thu Thuy
Thar Nguyen Pedagogncal College

Quang Trung Street, Thai Nguyen city, Viet Nam

Abstract

The paper concerns interesting problems related to the field of Complex Analysis, in particular, Nevanlinna theory of meromorphic functions and applications. We prove some new normal criterias for family of meromorphic functions concerning the normality criteria due to Pang and Zalcman [2]. Our main result is stated: Let a be nonzero complex value and $n \geq 2$ be a positive integer, and let n_{1}, \ldots, n_{k-1} be nonnegative integers, n_{k} be positive integer ($k \geq 1$). Let \mathcal{F} be a family of meromorphic functions in a complex domain D all of whose zeros have multiplicity at least k such that $E_{f}=\left\{z: f^{n}(z)\left(f^{\prime}\right)^{n_{1}}(z) \cdots\left(f^{(k)}\right)^{n_{k}}(z)-a=0\right\}$ has at most one point in D, for every $f \in \mathcal{F}$. Then \mathcal{F} is a normal family. In our best knowledge, it is a new result which is supplement the result of PangZalcman in this trend.

Keywords: entire function, meromorphic function, normal family, Nevanlinna theory, Zalcman's Lemma.

1 Introduction

Let D be a domain in the complex plane \mathbb{C} and \mathcal{F} be a family of meromorphic functions in D. The family \mathcal{F} is said to be normal in D, in the sense of Montel, if for any sequence $\left\{f_{v}\right\} \subset \mathcal{F}$, there exists a subsequence $\left\{f_{v_{v}}\right\}$ such that $\left\{f_{v_{2}}\right\}$ converges spherically locally uniformly in D, to a meromorphic function or ∞.
In 1999, Pang and Zalcman [2] proved the normality criteria as follows:
Theorem 1. Let n and k be natural numbers and \mathcal{F} be a family of holomorphic functions in a domain D all of whose zeros have multiplicity at least k. Assume that $f^{n} f^{(k)}-1$ is non-vanishing for each $f \in \mathcal{F}$. Then \mathcal{F} is normal in D.

The main purpose of this paper is to establish some normality criterias for the case of meromorphic functions in above result. Namely, we prove

Theorem 2. Let a be nonzero complex value and $n \geq 2$ be a positive integer, and let n_{1}, \ldots, n_{k-1} be nonnegative integers, n_{k} be positive integer ($k \geq 1$). Let \mathcal{F} be a family of meromorphic functions in a complex domain D all of whose zeros have multiplicity at least k such that $E_{f}=\{z$: $\left.f^{n}(z)\left(f^{\prime}\right)^{n_{1}}(z) \cdots\left(f^{(k)}\right)^{n_{k}}(z)-a=0\right\}$ has at most one point in D_{1} for every $f \in \mathcal{F}$. Then \mathcal{F} is a normal family.

In Theorem 2, if $E_{f}=\varnothing$, this means $f^{n}\left(f^{\prime}\right)^{n_{1}} \cdots\left(f^{(k)}\right)^{n_{k}} \neq a$, then we obtain the following result.

Corollary 1. Let a be nonzero complex value and $n \geq 2$ be a positive integer, and let n_{1}, \ldots, n_{k-1} be nonnegative integers, r_{k} be positive integer ($k \geq 1$). Let \mathcal{F} be a family of meromorphic functions in a complex domain D all of whose zeros have mudtiplicity at least k such that $f^{n}\left(f^{\prime}\right)^{n_{1}} \cdots\left(f^{(k)}\right)^{n_{k}} \neq a$ in D for every $f \in \mathcal{F}$. Then \mathcal{F} is a normal family.

In Corollary 1, taking $n_{j}=0, j=1, \ldots, k-$ $1, n_{k}=1$, we get

Corollary 2, Let a be nonzero complex value and $k, n \geq 2$ are positive integer. Let \mathcal{F} be a family of meromorphic functions in a complex domain D all of whose zeros have multiplicity at least k such that $f^{n} f^{(k)}-a$ is non-vanishing for every $f \in \mathcal{F}$. Then \mathcal{F} is a normal family.

2 Lemma

In order to prove Theorem 2, we need the following lemmas:

Lemma 1 (Zalcman's Lemma, [4]). Let \mathcal{F} be a famuly of meromorphic functions defined in the unit dise D satisfying all zeros of functions in \mathcal{F} having multiplicity at least p, and all poles at least q. Let α be real number satisfying $-p<\alpha<q$. Then, \mathcal{F} is not normal at z_{0} if and only if there exist
(i) a number $0<r<1$;
(ii) points z_{n} with $\left|z_{n}\right|<r, z_{\mathrm{n}} \rightarrow z_{0}$;
(iii) functions $f_{n} \in \mathcal{F}$;
(vv) positive numbers $\rho_{n} \rightarrow 0^{+}$;
such that $g_{n}(\xi)=\rho_{n}^{\alpha} f_{n}\left(x_{n}+\rho_{n} \xi\right) \rightarrow g(\xi)$ locally uniformly with respect to the spherical metric, where g is a nonconstant meromorphic function on \mathbb{C}, all of whose zeros and poles have multiplicity at least p, q respectively. Moreover, g has order at most 2.

Lemma 2 ([1]). Let g be a entire function and M is a positive constant. If $g^{\#}(\xi) \leqslant M$ for all $\xi \in \mathbb{C}$, then g has order at most one.

Remark 3. In Lemma 1, if \mathcal{F} is a family of holomorphic functions, then by Hurwitz theorem, g is a holomorphic function. Therefore, by Lemma 2_{1} the order of g is not greater than 1.

Lemma 3. Let f be a non-constant rational function on the complex plane, and let k be a positive integer. Assume that all of zeros of f have multiplicity at least k. We consider' a nonzero complex number a and nonnegative integers $n_{1} n_{1}, \ldots, n_{k}$ satisfying $n_{1}+\cdots+n_{k} \geq 1$ and $n \geq 2$. Then the equation

$$
f^{n}\left(f^{\prime}\right)^{n_{1}} \cdots\left(f^{(k)}\right)^{n_{k}}-a=0
$$

has at least two distinct roots.

Proof. We distinguish two cases.
Case 1. f is a polynomial. Since all zeros of f have multiplicity at least k, we get that the polynomial $f^{n}\left(f^{\prime}\right)^{n_{1}} \ldots\left(f^{(k)}\right)^{n_{k}}-$ a has degree at least 2. Suppose that $f^{n}\left(f^{\prime}\right)^{n_{1}} \ldots\left(f^{(k)}\right)^{n_{k}}-a$ has unique zero z_{0}. We have

$$
\begin{align*}
& f^{n}(z)\left(f^{\prime}(z)\right)^{n_{1}} \cdots\left(f^{(k)}(z)\right)^{n_{k}}-a \\
& =A\left(z-z_{0}\right)^{\ell}, \ell \geq 2, A \neq 0 \tag{2.1}
\end{align*}
$$

This implies,

$$
\begin{aligned}
& \left(f^{n}(z)\left(f^{\prime}(z)\right)^{n_{1}} \cdots\left(f^{(k)}(z)\right)^{n_{k}}\right)^{\prime} \\
& =A \ell\left(z-z_{0}\right)^{\ell-1}
\end{aligned}
$$

Hence, the function $\left(f^{n}\left(f^{\prime}\right)^{n_{1}} \cdots\left(f^{(k)}\right)^{n_{k}}\right)^{\prime}$ has unique zero z_{0}. On the other hand, since $n \geq 2$, we have that a zero of f is also a zero of $\left(f^{n}\left(f^{\prime}\right)^{n_{1}} \cdots\left(f^{(k)}\right)^{n_{k}}\right)^{\prime}$. Hence, the polynomial f has unique zero z_{0}. This is impossible, by (2.1) and by the fact that $a \neq 0$.

Hence, the equation $f^{n}\left(f^{\prime}\right)^{n_{1}} \cdots\left(f^{(k)}\right)^{n_{k}}-$ $a=0$ has at least two distinct roots, in this case.

Case 2. f is not a polynomial.
Since, f is a rational function with all zeros having multiplicity at least k, we can write
$f=A \frac{\left(z-\alpha_{1}\right)^{m_{1}}\left(z-\alpha_{2}\right)^{m_{2}} \cdots\left(z-\alpha_{s}\right)^{m_{s}}}{\left(z-\beta_{1}\right)^{d_{1}}\left(z-\beta_{2}\right)^{d_{2}} \cdots\left(z-\beta_{t}\right)^{d_{t}}}$,
where the integers s, t can be zero, and $m_{i} \geq k$.

Set $M=m_{1}+\cdots+m_{s}, N=d_{1}+\cdots+d_{t} \geq t$, ($M=0$, if $s=0$, and $N=0$ if $t=0$). Then $M \geq s k$, and $N \geq t$.

We have

$$
f^{n}(z)=A^{n} \frac{\prod_{k=1}^{s}\left(z-\alpha_{k}\right)^{n m_{k}}}{\prod_{l=1}^{t}(z-\beta l)^{n d_{l}}}
$$

and

$$
\begin{align*}
& f^{(j)}=A \frac{\prod_{k=1}^{s}\left(z-\alpha_{k}\right)^{m_{k}-j}}{\prod_{l=1}^{t}\left(z-\beta_{l}\right)^{d_{l}+j}} g_{j}(z) \\
& (j=1, \ldots, k) \tag{2.3}
\end{align*}
$$

where $g_{j}(z)$ is a polynomial with $\operatorname{deg} g_{3} \leq$ $j(s+t-1)$. Therefore,

$$
\begin{align*}
& f^{n}(z)\left(f^{\prime}(z)\right)^{n_{1}} \cdots\left(f^{(k)}(z)\right)^{n_{k}} \\
& =\frac{\prod_{i=1}^{s}\left(z-\alpha_{2}\right)^{\left(n+\sum_{j=1}^{k} n_{j}\right) m_{n}-\sum_{j=1}^{k} n_{j}} g(z)}{\prod_{\ell=1}^{t}\left(z-\beta_{\ell)}^{\left(n+\sum_{j=1}^{k} n_{j}\right) \alpha_{\ell}+\sum_{j=1}^{k} n_{j J}} g(z)\right.} \\
& =\frac{P(z)}{Q(z)} \tag{2.4}
\end{align*}
$$

where $g(z)=A^{n+n_{1}+\ldots+n_{k}} \prod_{j=1}^{k} g_{j}^{\pi_{j}}(z)$, $\operatorname{deg} g \leq\left(\sum_{j=1}^{k} j n_{j}\right)(s+t-1)$.

Hence

$$
\begin{align*}
& \left(f^{n}(z)\left(f^{\prime}(z)\right)^{n_{1}} \cdots\left(f^{(k)}(z)\right)^{n_{k}}\right)^{\prime} \\
& =\frac{\prod_{\imath=1}^{s}\left(z-\alpha_{1}\right)^{\left(n+\sum_{j=1}^{k} n_{j}\right) m_{i}-\sum_{j=1}^{k} n_{j} j-1}}{\prod_{\ell=1}^{t}\left(z-\beta_{1}\right)^{\left(n+\sum_{j=1}^{k} n_{j}\right) d_{\ell}+\sum_{j=1}^{k} n_{j} j+1} g_{1}(z),} \tag{2.5}
\end{align*}
$$

where $\operatorname{deg} g_{1} \leq\left(\sum_{j=1}^{k} j n_{j}+1\right)(s+t-1)$.
*) Suppose that $f^{n}\left(f^{\prime}\right)^{n_{1}} \ldots\left(f^{(k)}\right)^{n_{k}}-a=0$ has unique zero z_{0}.

Then, we can write

$$
\begin{align*}
& f^{n}(z)\left(f^{\prime}(z)\right)^{n_{1}} \cdots\left(f^{(k)}(z)\right)^{n_{k}} \\
& =a+\frac{B\left(z-z_{0}\right)^{l}}{\prod_{\varepsilon=1}^{t}\left(z-\beta_{\ell}\right)^{\left(n+\sum_{j=1}^{k} n_{y}\right) d_{1}+\sum_{j=1}^{k} n_{7} j}}, \tag{2.6}
\end{align*}
$$

where $B \neq 0, \alpha_{i} \neq z_{0}$.
Then

$$
\begin{align*}
& \left(f^{n}(z)\left(f^{\prime}(z)\right)^{n_{1}} \cdots\left(f^{(k)}(z)\right)^{n_{k}}\right)^{\prime} \\
& =\frac{\left(z-z_{0}\right)^{i-1} g_{2}(z)}{\prod_{\ell=1}^{t}\left(z-\beta_{\ell}\right)^{\left(n+\sum_{j=1}^{k} n_{2}\right) d_{\ell}+\sum_{j=1}^{k} n_{2} j+1}}, \tag{2.7}
\end{align*}
$$

where $g_{2}(z) \quad B\left(l-\left(n+\sum_{j=1}^{k} n_{j}\right) N-\right.$ $\left.\left(\sum_{j=1}^{k} j n_{j}\right) t\right) z^{t}+b_{i-1} z^{t-1}+\cdots+b_{0}$; and b_{0}, \ldots, b_{t-1} are constants.
Subcase 1. $l \neq\left(n+\sum_{j=1}^{k} \pi_{j}\right) N+\left(\sum_{j=1}^{k} j n_{j}\right) t$. Then, from (2.4) and (2.6), we have
$\operatorname{deg} P \geq \operatorname{deg} Q$. Hence,

$$
\begin{aligned}
& \left(n+\sum_{j=1}^{k} n_{j}\right) M-\left(\sum_{j=1}^{k} j n_{j}\right) s+\operatorname{deg} g \\
& \geq\left(n+\sum_{j=1}^{k} n_{j}\right) N+\left(\sum_{j=1}^{k} j n_{j}\right) t .
\end{aligned}
$$

On the other hand,

$$
\operatorname{deg} g \leq\left(\sum_{j=1}^{k} j n_{j}\right)(s+t-1)
$$

Therefore,

$$
\begin{aligned}
(n & \left.+\sum_{j=1}^{k} n_{j}\right) M-\left(\sum_{j=1}^{k} j n_{j}\right) s \\
& +\left(\sum_{j=1}^{k} j n_{j}\right)(s+t-1) \\
\geq & \left(n+\sum_{j=1}^{k} n_{j}\right) N+\left(\sum_{j=1}^{k} j n_{j}\right) t .
\end{aligned}
$$

Then, $M>N$.
From (2.5) and (2.7), we have

$$
\begin{aligned}
& \prod_{i=1}^{s}\left(z-\alpha_{z}\right)^{\left(n+\sum_{j=1}^{k} n_{j}\right) m_{z}-\sum_{j=1}^{k} n_{y} j-1} g_{1}(z) \\
& \equiv\left(z-z_{0}\right)^{l-1} g_{2}(z)
\end{aligned}
$$

Therefore, since $z_{0} \neq \alpha_{i}, i=1, \ldots, s$ and $\operatorname{deg} g_{2}=t$, we have

$$
\left(n+\sum_{j=1}^{k} n_{j}\right) M-\left(\sum_{j=1}^{k} j n_{j}+1\right) s \leq t
$$

Then

$$
\begin{aligned}
& \left(n+\sum_{j=1}^{k} n_{j}\right) M \leq\left(\sum_{j=1}^{k} j n_{j}+1\right) s+t \\
& \leq\left(\sum_{j=1}^{k} j n_{j}+1\right) \frac{M}{k}+N \\
& <\left(\sum_{j=1}^{k} n_{j}\right) M+\left(1+\frac{1}{k}\right) M \\
& \leq\left(n+\sum_{j=1}^{k} n_{j}\right) M .
\end{aligned}
$$

This is a contradiction.
Subcase 2. $l=\left(n+\sum_{j=1}^{k} n_{j}\right) N+\left(\sum_{j=1}^{k} j n_{j}\right) t$.
If $M>N$, then by an argument simliar to the last part of Subase 1, we get a contradiction. Hence, $M \leq N$.

Since $z_{0} \neq \alpha_{j}(j=1, \ldots, s)$ therefore, by (2.5) and (2.7) we have

$$
l-1 \leq \operatorname{deg} g_{1} \leq\left(\sum_{j=1}^{k} j n_{j}+1\right)(s+t-1)
$$

Therefore,

$$
\begin{aligned}
& \left(n+\sum_{j=1}^{k} n_{j}\right) N=l-\left(\sum_{j=1}^{k} j n_{j}\right) t \\
& \leq \operatorname{deg} g_{1}+1-\left(\sum_{j=1}^{k} j n_{j}\right) t \\
& \leq\left(\sum_{j=1}^{k} j n_{j}+1\right)(s+t-1)+1-\left(\sum_{j=1}^{k} j n_{j}\right) t \\
& <\left(\sum_{j=1}^{k} j n_{j}\right) s+s+t \leq \frac{M}{k}\left(\sum_{j=1}^{k} j n_{j}+1\right)+N \\
& \leq \frac{N}{k}\left(\sum_{j=1}^{k} j n_{j}+1\right)+N \leq\left(n+\sum_{j=1}^{k} n_{j}\right) N .
\end{aligned}
$$

This is a contradiction.
*) Suppose that $f^{n}\left(f^{\prime}\right)^{n_{1}} \ldots\left(f^{(k)}\right)^{n_{k}}-a=0$ is nowhere vanishing.
Then

$$
\begin{align*}
& f^{n}(z)\left(f^{\prime}(z)\right)^{n_{1}} \cdots\left(f^{(k)}(z)\right)^{n_{k}}=\frac{P(z)}{Q(z)} \\
& =a+\frac{B}{\prod_{\ell=1}^{t}\left(z-\beta_{\ell}\right)^{\left(n+\sum_{j=1}^{k} n_{j}\right) d_{\ell}+\sum_{j=1}^{k} n_{j} j}}, \tag{2.8}
\end{align*}
$$

where B is a non-zero constant.
Hence, $\operatorname{deg} P=\operatorname{deg} Q$. Therefore, by (2.4)

$$
\begin{aligned}
& M\left(n+\sum_{j=1}^{k} n_{j}\right)-s \sum_{j=1}^{k} j n_{j}+\operatorname{deg} g \\
& =N\left(n+\sum_{j=1}^{k} n_{j}\right)+t \sum_{j=1}^{k} j n_{j}
\end{aligned}
$$

On the other hand,

$$
\operatorname{deg} g \leq\left(\sum_{j=1}^{k} j n_{j}\right)(s+t-1)
$$

Therefore,

$$
M \geq N+\frac{\sum_{j=1}^{k} j n_{j}}{n+\sum_{j=1}^{k} n_{j}}
$$

Then, $M>N$.
By (2.8), we have

$$
\begin{align*}
& \left(f^{n}(z)\left(f^{\prime}(z)\right)^{n_{1}} \cdots\left(f^{(k)}(z)\right)^{n_{k}}\right)^{\prime} \\
& =\frac{-B g_{3}(z)}{\prod_{\ell=1}^{t}\left(z-\beta_{\ell}\right)^{\left(n+\sum_{j=1}^{k} n_{j}\right) d_{\varepsilon}+\sum_{j=1}^{k} j n_{j+1}}} \tag{2.9}
\end{align*}
$$

where

$$
\begin{gathered}
g_{3}(z)=\left(\left(n+\sum_{j=1}^{k} n_{j}\right) N+t \sum_{j=1}^{k} j n_{j}\right) z^{t-1} \\
t_{-2} z^{t-2}+\cdots+b_{1}
\end{gathered}
$$

$\operatorname{deg} g_{3}=t-1$, and $b_{i} \in \mathbb{C}$.
From (2.5) and (2.9), we have

$$
\begin{aligned}
\left(n+\sum_{j=1}^{k} n_{j}\right) M & -\left(1+\sum_{j=1}^{k} j n_{j}\right) s \\
& \leq \operatorname{deg} g_{3}=t-1
\end{aligned}
$$

Hence

$$
\begin{aligned}
(n & \left.+\sum_{j=1}^{k} n_{j}\right) M \leq\left(1+\sum_{j=1}^{k} j n_{j}\right) s+t-1 \\
& \leq\left(1+\sum_{j=1}^{k} j n_{j}\right) \frac{M}{k}+N-1 \\
& <\left(\sum_{j=1}^{k} n_{j}+2\right) M-1<\left(\sum_{j=1}^{k} n_{j}+n\right) M .
\end{aligned}
$$

This is a contradiction. We have completed the proof of Lemma 3.

Lemma 4 ([3]). Let f be a transcendental meromorphic function on the complex plane, and $a \neq 0$ be a complex number. Assume that $n \geq 2, n_{1}, \ldots, n_{k}$ are nonnegative integers such that $n_{1}+\cdots+n_{k} \geq 1$. Then the equation

$$
f^{n}\left(f^{\prime}\right)^{n_{1}} \ldots\left(f^{(k)}\right)^{n_{k}}-a=0
$$

has infinitely roots.

3 Proof of Theorem 2

Proof of Theorem 2. Without loss the generality, we may asssume that D is the unit disc. Suppose that \mathcal{F} is not normal at $z_{0} \in$ D. By Lemma 1, for $\alpha=\frac{\sum_{j=1}^{k} n_{j}}{n+\sum_{j=1}^{k} n_{j}}$ there exist

1) a real number $\tau, 0<r<1$,
2) points $z_{v},\left|z_{v}\right|<r, z_{v} \rightarrow z_{0}$,
3) positive numbers $\rho_{v}, \rho_{v} \rightarrow 0^{+}$,
4) functions $f_{v}, f_{v} \in \mathcal{F}$
such that

$$
\begin{equation*}
g_{v}(\xi)=\frac{f_{v}\left(z_{v}+\rho_{v} \xi\right)}{\rho_{v}^{\alpha}} \rightarrow g(\xi) \tag{3.1}
\end{equation*}
$$

spherically uniformly on compact subsets of \mathbb{C}, where $g(\xi)$ is a non-constant meromorphic function all of whose zeros have multiplicity at least k and $g^{\#}(\xi) \leqslant g^{\#}(0)=$ 1.

On the other hand,

$$
\begin{aligned}
\left(g_{v}^{(j)}(\xi)\right)^{n_{j}} & =\left(\left(\frac{f_{v}\left(z_{v}+\rho_{v} \xi\right)}{\rho_{v}^{\alpha}}\right)^{(j)}\right)^{n_{3}} \\
& =\frac{1}{\rho_{v}^{n_{v}(\alpha-g)}}\left(f_{v}^{(\jmath)}\right)^{n_{j}}\left(z_{v}+\rho_{v} \xi\right)
\end{aligned}
$$

for all $j=1, \ldots, k$. Therefore, by the definition of α and by (3.1), we have

$$
\begin{align*}
& f_{v}^{n}\left(z_{v}+\rho_{v} \xi\right)\left(f_{v}^{\prime}\right)^{n_{1}}\left(z_{v}+\rho_{v} \xi\right) \\
& \cdots\left(f_{v}^{(k)}\right)^{n_{k}}\left(z_{v}+\rho_{v} \xi\right) \\
& =g_{v}^{n}(\xi)\left(g_{v}^{\prime}(\xi)\right)^{n_{1}} \cdots\left(g_{v}^{(k)}(\xi)\right)^{n_{k}} \\
& \rightarrow g^{n}(\xi)\left(g^{\prime}(\xi)\right)^{n_{1}} \cdots\left(g^{(k)}(\xi)\right)^{n_{k}} \tag{3.2}
\end{align*}
$$

spherically uniformly on compact subsets of $\mathbb{C} \backslash P$, where P denotes by the set of poles of g. We have $g^{n}(\xi)\left(g^{\prime}(\xi)\right)^{n_{1}} \ldots\left(g^{(k)}(\xi)\right)^{n_{k}} \not \equiv$ a. Indeed, if

$$
\begin{equation*}
g^{n^{\prime}}(\xi)\left(g^{\prime}(\xi)\right)^{n_{1}} \ldots\left(g^{(k)}(\xi)\right)^{n_{k}} \equiv a \tag{3.3}
\end{equation*}
$$

Then g is a nonconstant entire function with order at most one. By Lemma 2, we get $g(\xi)=c e^{d \xi}$, where $d \neq$ 0 . This contradicts with (3.3). From (3.2) and Hurwtiz's theorem, we see that $g^{n}(\xi)\left(g^{\prime}(\xi)\right)^{n_{1}} \ldots\left(g^{(k)}(\xi)\right)^{n_{k}}-a$ has at most one zero. This is a contradiction with Lemma 4 and Lemma 3. Hence, \mathcal{F} is a normal family.

References

[1] J. Clunee and W. K. Hayman (1966), "The spherical derivative of integral and meromorphic functions', Comm. Math. Helv, 40, pp. 117-148.
[2] X. C. Pang and L. Zalcman (1999), "On theorems of Hayman and Clunie", New Zealand J. Math, 28, pp. 71-75.
[3] C. C. Yang and P. C. Hu (1996), "On the value distribution of $f f^{(k)}$ ", Kodai J. Math, 19, pp. 157-167.
[4] L. Zaloman (1998), "Normal families: New perspective", Bull. Amer, Mat. Soc, 35, pp. 215-230.

Summary
 MỘT SỐ TIÊU CHUẨN CHUẢN TẮC MỚI CHO HO CĂC HÅM PHÂN HÌNH LIÊN QUAN DẾN KÉTT QUȦ CU̇A PANG-ZALCMAN

Bùi Thị Kiều Oanh*, Dương Ngọc Phương, Ngô Thị Thu Thủy

Cao Dăng Su Pham Thâi Nguyền
Bài báo quan tâm đên những linnh vực thú vị trong giải tích phức: Lý thuyét Nevanlinna và Ho
 quan đến tuẻu chuả̉n chuả̉n tắc của Pang-Zalcman [2]. Kêt quả chính của chúng tôi đực phât biểu nhự sau: Cho áa lă số phức khác không và $n \geq 2$ là số nguyên dương; n_{1}, \ldots, n_{k-1} là các số nguyên khồng âm và n_{k} là sớ nguyễn dương $(k \geq 1)$. Cho \mathcal{F} là họ các hầm phân hình trễn miền D mà mọi
khōng điẻ̉n có bổi it nhầt k mà̉ $E_{f}=\left\{z: f^{n}(z)\left(f^{\prime}\right)^{n_{1}}(z) \cdots\left(f^{(k)}\right)^{n_{k}}(z)-a=0\right\}$ chứa nhiều nhất một điểm trong D vơi mọi $f \in \mathcal{F}$. Khı đơ họ \mathcal{F} chuẩn tấc trên D. Trong biểu biết tốt nhất của chóng tôi, đây là kết quả mởi bổ sung cho kết quả của Pang-Zalcman.
Từ khôa: Hâm nguyên, Hàm phân hình, Ho chuẳn tấc, Lẏ̉ thutét Nevanhnna, Bổ đề Zalcman.

[^0]
[^0]: ${ }^{0 *} \mathrm{Tel}$ Email- kieuoanh.dhsptn@gmail.com, dnphuongtc@gmail.com, thuy20, "ggmail.com.
 Ngày" bàà: 15/9/2017; Ngày phän blẹn: 13/10/20I7; Ngày duyệt đăng: 30/11/2017

