ZEROS OF THE DERIVATIVE OF A p-ADIC MEROMORPHIC FUNCTION

Nguyen Viet Phuong ${ }^{01}$ and Tran Thanh Tung ${ }^{02}$

Thai Ngutyen Universtty of Economics and Business Administration

ABSTRACT

Abstract

The theorem. of Picard in its simplest form asserts that every nonconstant function $f(z)$, meromosphic-in the plane, assumes there all complex values w with the possible exception of two. A value w which is not assumed by $f(z)$ will be called a Picard exceptional value. In 1959, Hayman [4] created an important research subject in considering the value distributions of differential polynomials, that is if f is a transcendental meromorphic function and $n \in \mathbb{N}$, then $f^{\prime} f^{n}$ takes every finite nonzero value infinitely often. The Hayman conjecture implies that the finite Picard exceptional value of $f^{\prime} f^{n}$:may only be zero. Using techniques of Nevanlinna theory, we showed that for a transcendental meromorphic function f in an algebraically closed fields of characteristic zero, complete for a non-Archimedean absolute value \mathbb{K} and let $k \in \mathbb{N}^{*}$, then the function $\left(f^{n}\right)^{(k)}$ takes every value $b \in \mathbb{K}, b \neq 0$ infinitely many times if $n \geq 4$, which generalizes the related result due to Ojeda [8] for some differential polynomials of k-th derivative.

Keywords: Differential polynomial, value dustribution, non-Archzmedean, p-adic meromorphic function, exceptional values.

1 Introduction and main result

Now let \mathbb{K} be an algebraically closed Field of characteristic zero, complete for a nonArchimedean absolute value. and f be a nonconstant meromorphic function on \mathbb{K}. We denote by $\mathcal{A}(\mathbb{K})$ the $\mathbb{K}=a l$ gebra of entire functions in \mathbb{C}, by $\mathcal{M}(\mathbb{K})$ the field of meromorphic functions in \mathbb{K}, i.e. the field of fractions of $\mathcal{A}(\mathbb{K})$. Let $f \in \mathcal{M}(\mathbb{K})$ such that $f(0) \neq 0, \infty$. We denote by $S(r, f)$ any function satisfying $S(r, f)=\circ(T(r, f))$ as $r \rightarrow+\infty$ outside of a possible exceptional set with finite measure. we call
quasz-exceptional value for a transcendental meromorphic function f in \mathbb{K} a value $b \in \mathbb{K}$ such that $f-b$ has finitely many zeros.

In 1926, as an application of the celebrated Nevanlinna's value distribution theory of meromorphic functions, Nevanlinna proved that two distinct nonconstant meromorphic functions f and g on the complex plane \mathbb{C} cannot have the same inverse images ignoring multiplicities for five distinct values, and f is a Möbius transformation of g if they have the same inverse images counting multiplicities for four distinct values. In general, the number four can not be re-

[^0]cuced.
In 1959, Hayman [4] created an important research subject in considering the value distributions of differential polynomials, that is if f is a transcendental meromorphic function and $n \in \mathbb{N}$, then $f^{\prime} f^{n}$ takes every finite nonzero value infinitely often. He conjectured it should be hold for any n. This conjecture has been solved by Hayman [4] for $n \geq 3$, by Mues [7] for $n=2$, by Bergweiler and Eremenko [1] and Chen and Fang [2] for $n=1$. The Hayman conjecture implies that the finite Picard exceptional value of $f^{\prime} f^{n}$ may only be zero.
In recent years, similar problems for functions in non-Archimedean fields are investigated (see, e.g., [3, 6, 8]). In [8] J. Ojeda proved that, for a transcendental meromorphic function f in an algebraically closed fields of characteristic zero, complete for a non-Archimedean absolute value \mathbb{K}; the function $f^{\prime} f^{n}-1$ has infinitely many zeros if $n \geq 2$. Note that $f^{\prime} f^{n}=\frac{1}{n+1}\left(f^{n+1}\right)^{\prime}$. A natural generalization is considering differential polynomials of k-th derivative instead of the first derivative. In this paper, we will reach to the direction by considering differential polynomials of k-th derivative $\left[f^{n}\right]^{(k)}$. Our results as follows.

Main Theorem. Let $f \in \mathcal{M}(\mathbb{K})$ be transcendental and let $k \in \mathbb{N}^{*}$. Then, for every $n \in \mathbb{N}$ and $n \geq 4,\left(f^{n}\right)^{(k)}$ takes every value $b \in \mathbb{K}, b \neq 0$ infinitely many times.

As an immediate consequence of Main Theorem, we obtain a special case as following.

Corollary 2.($\mid 8]$) Let $f \in \mathcal{M}(\mathbb{K})$ be transcendental. Then, for every $b \in \mathbb{K}$ different from $0, f^{3} f^{\prime}-b$ has infinitely many zeros.

2 Preliminary on Nevanlinna's Theory

We recall some standard definitions and results in Nevanlinna theory. Let f be a meromorphic function on \mathbb{K}. Let $\boldsymbol{n}(t, f)$ be the number of poles of $f(z)$ in $|z| \leq t$ each counted with correct multiplicity and $\bar{n}(t, f)$ the number of poles of $f(z)$ in $|z| \leq$ t, where each multiple pole is counted only once. The counting function of poles is defined as follows

$$
\begin{aligned}
N(r, f):= & \int_{0}^{r}[n(t, f)-n(0, f)] \frac{d t}{t} \\
& +n(0, f) \log r,
\end{aligned}
$$

with similar definition for $\bar{N}(r, f)$. The proximity function and characteristic functoon are defined respectively as follows

$$
\begin{gathered}
m(r, f):=\log ^{+} \mu(r, f)=\max \{0, \mu(r, f)\} \\
T(r, f):=m(r, f)+N(r, f) .
\end{gathered}
$$

The logarithmic derivative lemma can be stated as follows.

Lemma 2.1. Let f be a non-constant meromorphice function on \mathbb{K}. Then

$$
m\left(r, \frac{f^{\prime}}{f}\right)=O(1)
$$

as $r \rightarrow \infty$ outside a subset of finate measure.

We state the first and second fundamental theorem in p-adic Nevanlinna theory (see e.g. [8]):

Theorem 2.2. Let $f(z)$ be a meromorphic function and $c \in \mathbb{K}$. Then

$$
T\left(r, \frac{1}{f-c}\right)=T(r, f)+O(1)
$$

Theorem 2.3. Let a_{1}, \cdots, a_{q} be a set of distinct numbers in \mathbb{K}. Let f be a
non-constant meromorphic function on \mathbb{K}. Then, the inequality

$$
\begin{gathered}
(q-1) T(r, f) \leq \bar{N}(r, f)+\sum_{j=1}^{q} \bar{N}\left(r, \frac{1}{f-a_{j}}\right) \\
-\log r+S(r, f)
\end{gathered}
$$

as $r \rightarrow \infty$ outside a subset of finite measure.

3 Proof of Main Theorem

For the proof of our result, we first discuss the following lemmas

Lemma 3.1 (Milloux's inequality) ([5]) Let $j \in \mathcal{M}(\mathbb{K})$ be non-constant. Then

$$
\begin{aligned}
T(r, f) \leq & \bar{N}(r, f)+N\left(r, \frac{1}{f}\right) \\
& +\bar{N}\left(r, \frac{1}{f^{(k)}-1}\right)-N\left(r, \frac{1}{f^{(k+1)}}\right) \\
& -\log r+S(r, f) .
\end{aligned}
$$

Lemma 3.2. Let $f \in \mathcal{M}(\mathbb{K})$ be transccadental. Then, for $k \geq 2$ be integer and $\epsilon>0$,

$$
\begin{align*}
N\left(r, \frac{1}{f}\right) \leq & 2 \bar{N}\left(r, \frac{1}{f}\right)+N\left(r, \frac{1}{f^{(k)}}\right) \\
& +\epsilon T(r, f)+S(r, f) . \tag{1}
\end{align*}
$$

Proof. We will follow Wang's proof in [9]. If f has only finitely many zeros and poles, then (1) holds.
Now, we assume that f has infinitely many zeros and poles. For given $k \geq 2$ and $\epsilon>0$, we choose an $m \in \mathbb{Z}$ such that

$$
k^{2}+2-k<m \epsilon .
$$

Set

$$
W=W\left(f, z f, \ldots, z^{m} f, f^{\prime}, z f^{\prime}, \ldots, z^{m i} f^{\prime}\right)
$$

where $W\left(f_{1}, f_{2}, \ldots, f_{n}\right)$ denotes the Wronskian of $f_{1}, f_{2}, \ldots, f_{n}$. Then, we have $W \neq$ 0 . Otherwise, if $W \equiv 0$, then there exists numbers (not all of them zero) $\alpha_{1}, \beta_{i}(i=$ $0, \ldots, m$) in \mathbb{K} such that

$$
\begin{equation*}
\left(\sum_{i=0}^{m} \alpha_{\imath} z^{i}\right) f+\left(\sum_{t=0}^{m} \beta_{\imath} z^{i}\right) f^{\prime} \equiv 0 \tag{2}
\end{equation*}
$$

Since $\left(\sum_{i=0}^{m} \alpha_{i} z^{i}\right)^{2}+\left(\sum_{i=0}^{m} \beta_{i} z^{i}\right)^{2} \neq 0$, hence by (2) we see that f has only finitely many zeros and poles. This is a contradiction to the assumption. Evidently, from the ($k+m+1$) -row to the last row, each term in these rows is a differential polynomial in f with coefficients $c z^{t}(0 \leq i \leq m, c \in \mathbb{K})$ without derivatives of f of order less than k. Set

$$
\Phi=\frac{W}{f^{m+k}\left(f^{(k)}\right)^{m+2-k}}
$$

By the logarithmic derivative lemma, we show that $m(r, \Phi)=S(r, f)$.

Applying Jensen's formula to Φ, we have

$$
\begin{aligned}
N\left(\tau, \frac{1}{\Phi}\right) & =\log \mu(r, \Phi)+N(r, \Phi)+O(1) \\
& \leq N(r, \Phi)+S(\tau, f),
\end{aligned}
$$

and hence

$$
\begin{aligned}
0 \leq & N(r, \Phi)-N\left(r, \frac{1}{\Phi}\right)+S(r, f) \\
= & N\left(r, \frac{W}{f^{m+k}\left(f^{(k)}\right)^{m+2-k}}\right) \\
& -N\left(r, \frac{f^{m+k}\left(f^{(k)}\right)^{m+2-k}}{W}\right) \\
& +S(r, f) \\
= & \log \mu\left(\rho_{0}, \frac{W}{f^{m+k}\left(f^{(k)}\right)^{m+2-k}}\right) \\
& -\log \mu\left(r_{2} \frac{W}{f^{m+k}\left(f^{(k)}\right)^{m+2-k}}\right) \\
& +S(r, f) .
\end{aligned}
$$

Thus

$$
\begin{align*}
0 \leq & N(r, W)-N\left(r, \frac{1}{W}\right) \\
& -N\left(r, f^{m+k}\left(f^{(k)}\right)^{m+2-k}\right) \\
& +N\left(r, \frac{1}{f^{m+k}\left(f^{(k)}\right)^{m+2-k}}\right) \\
& +S(r, f) \tag{3}
\end{align*}
$$

If z_{0} is a zero of f of order p, then by substituting f by their Taylor series representar tions at point z_{0} in W and by a property of Wronskian, we have z_{0} is a zero point of W of order at least $(2 m+2)(p-1)$. Therefore, we get

$$
\begin{equation*}
N\left(r, \frac{1}{W}\right) \geq(2 m+2)\left(N\left(r, \frac{1}{f}\right)-\bar{N}\left(r, \frac{1}{f}\right)\right) \tag{4}
\end{equation*}
$$

By a similar computation, we obtain

$$
\begin{equation*}
N(r, W) \leq(2 m+2)(N(r, f)-\bar{N}(r, f)) . \tag{5}
\end{equation*}
$$

From (3), (4), (5) and $k \geq 2$, we obtain

$$
\begin{aligned}
& m N\left(r, \frac{1}{f}\right) \leqq 2 m \bar{N}\left(r, \frac{1}{f}\right)+m N\left(r, \frac{1}{f^{(k)}}\right) \\
& \left.\quad+\left(k^{2}-k+2\right) T(r, f)+N\left(r, \frac{1}{f^{(k)}}\right)\right) \\
& \quad+(2-k)(m \bar{N}(r, f)+S(r, f) \\
& \leq 2 m \bar{N}\left(r, \frac{1}{f}\right)+m N\left(r, \frac{1}{f^{(k)}}\right) \\
& \quad+\left(k^{2}-k+2\right) T(r, f)+S(r, f)
\end{aligned}
$$

this completes of proof.
Proof of mam theorem. Suppose $f \in \mathcal{M}(\mathbb{K})$ to be transcendental and suppose $b \neq 0$ to be a quasi-exceptional value of $f^{(k)}$. Without the loss of generality, we can suppose $b=1$. Applying Lemma 3.1 and lemma 3.2
with $\dot{\varepsilon}=\frac{1}{2 n}$, we obtain

$$
\begin{aligned}
& T\left(r, f^{n}\right) \leq \bar{N}\left(r, f^{n}\right)+N\left(r, \frac{1}{f^{n}}\right) \\
& \quad+\bar{N}\left(r, \frac{1}{\left(f^{n}\right)^{(k)}-1}\right)-N\left(r, \frac{1}{\left(f^{n}\right)^{(k+1)}}\right) \\
& \quad-\log r+S(r, f) \\
& \leq \\
& \hline 2 \bar{N}\left(r, \frac{1}{f^{n}}\right)+\bar{N}\left(r, \frac{1}{\left(f^{n}\right)^{(k)}-1}\right) \\
& \quad+\bar{N}(r, f)+\epsilon T\left(r, f^{n}\right)-\log r+S(r, f)
\end{aligned}
$$

Hence, we get

$$
\begin{aligned}
& \left(n-\frac{1}{2}\right) T(r, f) \leq \bar{N}(r, f)+2 \bar{N}\left(r, \frac{1}{f}\right) \\
& +\bar{N}\left(r, \frac{1}{\left(f^{n}\right)^{(k)}-1}\right)-\log r+S(r, f)
\end{aligned}
$$

which gives

$$
\begin{align*}
\left(n-\frac{7}{2}\right) T(r, f) \leq & \bar{N}\left(r, \frac{1}{f^{(k)}-1}\right)-\log r \\
& +S(r, f) . \tag{6}
\end{align*}
$$

Since the number of zeros of $f^{(k)}-1$ is q, taking multiplicity into account, we have

$$
\bar{N}\left(r, \frac{1}{f^{(k)}-1}\right) \leq q \log r+O(1)
$$

hence by (6) we obtain

$$
\left(n-\frac{7}{2}\right) T(r, f) \leq O(\log r)
$$

which contradicts the hypothesis $n \geq 4$. The proof is complete:-

References

1. W. Bergweiler and A. Eremenko, On the singulartites of the inverse to a meromorphic function of fente onder, Rev. Mat. Iberoamericana 11 (1995), no. 2, 355-373.
2. H. Chen, M. Fang, The value distribution of $f^{n} f^{\prime}$, Science in China (Serie A), 38 (1995): 789-798.
3. A. Escassut, J. Ojeda, The p-adxc Hayman conjecture when $n=2$, Complex Variables and Elliptic Equations 59 (2014): 1451-1455.
4. W.K. Hayman, Picard values of meromorphic functions and their derivatives, Ann. Math. 70 (1959) 9-42.
5. W.K. Hayman, Meromorphic Functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964.
6. B. Kamal, J. Ojeda, Volue destribution of p-adic meromorphic functions, Bulletin
of the Belgian Mathematical Society-Simon Stevin 18.4 (2011): 667-678.
7. E. Mues, Uber ein Problem von Hayman (German), Math. Z. 164 (1979), no. 3, 239 - 259.
8. J. Ojeda, Hayman's conjecture in a padic field, Taiwanese Journal of Mathematics 12 (2008): 2295-2313.
9. Y. F. Wang, On Mues conjecture and Pıcard values, Science in China serier A mathematics physics astronomy 36.1 (1993): 28-35.

Tóm tắt

CÁC KHÔNG ĐIỂM CỦA ĐẠO HÀM CỦA MỌT HÀM PHÂN HÌNH P-ADIC

Nguyễn Việt Phương và Trần Thanh Tùng Dai học Kinh té và QTKD - Dai học Tház Nguyēn
Dịinh lị Picard á dạng dơn giản nhắt khả̉ng dịnh rầng mōi hàm phān hình khác hà̀ng f trên mặt phẳng phức, nhận tất cả cấc giá trị phức w có thể trừ ra hai giá trị. Nếu f không nhận giá trị w thì w được gọi là giá trị bỏ đượe Picard. Năm 1959, Hayman [4] đạ tạo ra một đối tượng nghiên cứu quan trọng bằng viẹc xem xét các giá trị phân bố của các đa. thức vi phản, tức là nếu f là một hàm phân hình siêu việt và $n \in \mathbb{N}$, thì $f^{\prime} f^{n}$ nhận mỗi giá trị hữu hạn khâc không vô hạn lần. Giả thuyêt Hayman cho thấy rằng giá trị bỏ được Picard hữu hạn của $f^{\prime} f^{n}$ chỉ có thể là 0 . Sử dụng các kỹ thuật trong lý thuyết Nevanlinna, chúng tôi chứng minh rầng nếu với môt hăm phân hình siêu viêt f trong mồt trường đóng đại số, đây đư với một giá trị tuyệt đối không Acsimet \mathbb{K} và cho $k \in \mathbb{N}^{*}$, thì hàm $\left(f^{n}\right)^{(k)}$ nhận mổi giá trị $b \in \mathbb{K}_{,}, b \neq 0$ vổ hạn lần nếu $n \geq 4$. Két quả này của chúng tồi là một tổng quát kết quả của Ojeda [8] cho đa thức vi phân trong trường hợp đạo hàm cấp cao.
Từ khóa: Đa thức đạo hàm, phân bó giá tri, khöng Acsimet, hàm phän hình p-adic, các giá trị ngoại trừ.

[^0]: ${ }^{01}$ Tel: 0977615535, e-mail: nvphuongt@gmail.com
 ${ }^{02}$ Tel: 0943822828 , e-mail: tttang.tueba@gmail.com

