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ABSTRACT

3
The theorem. of Picard in its sirﬁplesl form asserts that every nonconstant function
f(z), meromorphic-in the plane, assumes there all complex values w with the pos-
sible exception of two. A value w which is not assumed by f(z) will be called a
Picard exceptional value. I.n 1959, Hayman (4] created an important research subject
in idering the value d. ions of differential polynomials, that is if f is a tran-
scendental meromorphic function and n € N, then f/f" rakes every finite nonzero
value infinitely often. The Hayman conjecture implies that the finite Picard excep-
tional value of f'f™:may only be zero. Using techniques of Nevanlinna theory, we
showed that for a transcendental meromorphic function f in an algebraically closed
fields of characteristic zero, p for a non-Archimed bsolute value K and
let k € N*, then the function (f7)®) takes every value & € K,5 # 0 infinitely
many times 1f n = 4, which generalizes the related result due to Ojeda [8] for some
differential polynomials of k-th derivative.

Keywords: Differential polynomial, value distribution, non-Archamedean, p—adic

meromorphic function,” exceptional values.

1 Introduction and main
result '

Now let K be an algebraically closed field
of characteristic zero, complete for a non-
Archimedean absolute value. and f be a
nonconstant meromeorphic function on K.
We denote by A(K) the Kealgebra of en-
tire functions in C, by M(K) the field of
meromorphic functions in K, i.e. the field
of fractions of A(K). Let f € M(K) such
that f(0) # 0,00. We denote by S(r, f)
any function satisfying S(r, f) = o(T'(r, f))
as r — +oo outside of B possible ex-
ceptional set with finite measure. we call

quasi-exceptional value for a transcenden-
ta]l meromoarphic function f in K a value
b € K such that § — b has finitely many
zeros.

In 1926, as an application of the celebrated
Nevanlinna’s velue distribution theory of
meromorphic functions, Nevanlinna proved
that two distinct nonconstant meromorphic
functions f and g on the complex plane
C cannot have the same inverse images ig-
noring multiplicities for five distinct values,
and f is & Mobius transformation of g if
they have the same inverse images count-
ing multiplicities for four distinct values.
In general, the number four can not be re-
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duced.

In 1959, Hayman [4] created an impor-
tant research subject in considering the
value distributions of differential polynomi-
als, that is if f is a transcendental mero-
morphic function and n € N, then f/f®
takes every finite nonzero value infinitely
often. He conjectured it should be hold for
any n. This conjecture has been solved by
Hayman [4] for n > 3, by Mues [7] for
7 = 2, by Bergweiler and Eremenko {1] and
Chen and Fang [2] for nn = 1. The Hayman
conjecture implies that the finite Picard ex-
ceptional value of f'f™ may only be zero.

In recent years, similar problems for func-
tions in hon-Archimedean, fields are inves-
tigated (see, €.g., [3, 6, 8]). In [8] J. Ojeda
proved that, for a transcendental meromor-
phic function f in an algebraically closed
fields of characteristic zero, complete for
a non-Archimedean absolute value K; the
function f/f™ — 1 has infinitely many zeros
if n > 2. Note that j/f" = ¢ oLy,
A natural generalization is considering dif-
ferential polynomials of k-th derivative in-
stead of the first derivative. In this paper,
we will reach to the direction by consider-
ing differential polynomials of k-th deriva-
tive [f*), Our results as follows.

Main Theorem. Let f € M(K) be tran-
scendental and let k € N*. Then, for every
neNandn > 4, (f*)*) takes every value
b e K, b # 0 infinitely many times.

As an immediate consequence of Main The-
orem, we abtain a special case as following.

Corollary 2.([8]) Let f € M(K) be tren-
scendental. Then, for every b € K different
from 0, £2f' — b has infinitely many zeros.

228

2 Preliminary on Nevan-
linna’s Theory

We recall some standard definitions and
results in Nevanlinna theory. Let f be a
meromorphic function on K. Let n(t, f) be
the number of pales of f(z) in |z| < ¢
each counted with correct multiplicity and
(¢, f) the number of poles of f(z) in |z <
t. where each multiple pole is counted only
once. The counting function of poles is de-
fined as follows

N ) = [ Inte. ) =m0 005
+n(0, f)logr,

with similar definition for N(r,f). The
prozimity function and characteristic func-
tion are defined respectively as follows

m(r, ) := log" u(r, f) = mex{0, u(r, )}
T(r, f) = m(n, Y+ N7, ).

The logarithmic derivative lemma can be
stated as follows.
Lemma 2.1. Let f be o non-constant
meromorphic function on K, Then

7

m(r,5)=0(1)

f
as T — oo vutside ¢ subsel of finate mea-
sure.

‘We state the first and second fundamental
theorem in p—adic Nevanlinna theory (see
eg [8):

Theorem 2.2. Let f(z) be a meromorphic
function and ¢ € K. Then

T(n5) = Tln ) +0(1).

Theorem 2.3. Let 0),--- ,a; be a set
of distinct numbers in K. Let f be o
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non-consiant meromorphic function on K.
Then, the inequality

(g—VT{r, f) <N, f) + iﬁ(n ﬁ)
¢l

=1
—logr + 5(n, f},

as T = 00 outside a subset of finite mea-
sure.

3 Proof of Main Theorem

For the proof of our result, we first discuss
the following lemmas

Lemma 3.1 (Milloux’s inequality)([5])
Let f € M(K) be non-constant. Then

T, 1) < N )+ N p)

— 1 1
+N(7‘,}W_—1)7N(r,}m)

—logr + 8(r, ).
Lemma 3.2. Let [ € M(K) be transcen-

dental. Then, for k > 2 be wnteger and
€>Q,

N(r,%) <aW(r, }) +N(r,?(1k—))

+eT(n )+ 86, [ (1)

Proof. We will follow Wang’s proof in [9].
¥f f has only finitely many zeros and poles,
then (1) holds.

Now, we assurne that f has infinitely many
zeros and poles. For given k> 2 and e > 0,
we choose an m € Z such that

42—k <me.

Set
W =W(f 2fr... 2" F el 20,

where W(f1, fa,..., fn) denotes the Wron-
skian of fi, f2,..., fa- Then, we have W #
0. Otherwise, if W = 0, then there exists
numbers (not all of them zero} a,,B3;(¢ =
0,....m) in K such that

m m
(Z(x.z')f + (Zﬁ,z“)f’ =0. (2
i=0 =0
\2 2
Since (E:’;U aiz’) + (ZZ’;O ﬁ,z‘) £0,
hence by (2) we see that f has only finitely
many zeros and poles. This is a contradic-
tion to the assumption. Evidently, from the
(k+m+ 1) —row to the last row, each term
in these rows is a differential polynomial in
f with coefficients cz*(0 € i < m,c € K)
without derivatives of f of order less than
k. Set
w
® Ty

By the logarithmic derivative lemma, we
show thdt m(r, @) = S(r, f).

Applying Jensen’s formula to @, we
have

Nr,3) = log alr, ) + N(r 8) + 0(1)
< N(r'2) + S(r, f),
and hence
0.< N(,8) - N(r, 5) +S(r, )
w
=N g
fm+k(f(k] )M-v-?—k
- (T’ W )
+8(r, f)
w
= logu(po, ?"Wm)

w
—log ”(T* fm+k(f(l:))m+2—k)
+8(r, f).
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‘Thus

0SNG\ W) = Niri )
g J'c‘,‘-n-fk(f(k))mw-k)
1
N prrepmpE)
+ 86, ) ®

If zg is a zero of f of order p, "then by substi-
tuting f by their Taylor series representa-
tions at point zp in W and by a property of
‘Wronskian, we have zg is a zero point of W
of order at least (2m.+2)(p—1). Therefore,
we get

1 —
N(r, W) >{(2m + 2)(N(r, %) — Nir, %)).
4
By a similar computation, we obtain

N, W) < (@m +2)(N(r f) - N(r, ).
(5

From (3), (4), (5) and % > 2, we obtain

(7',—) < 2mN(r, f)+mN(r k))

+ (K — k- 2)T(r, £) + N(r, =)

f(lc)
+(2 = E)(mN{r, f) + S(r, )

< mF(r, )l‘) +mN(, ﬁ)

+ (K2 =k + 2)T(r, )+ S(r, f),

this completes of proof.

Proof of main theorem. Suppase f € M(K)
to be transcendental and suppose b # 0 to
be & quasi-exceptional value of f®). With-
out the loss of generality, we can suppose
b=1. Applying Lemma 3.1 and lemma 3.2
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with € = E’ we obtmn
T(ﬁf“)<N(T,f")+N(7'v 7
_ 1
+W(r, (fn)(k) — 1) ~N(r, (fn)(k+1))
—logr + S(r, f)
1. -
< 2N(r, —) + N(T,W)
+ N(r,f) +€T{r, f*) —Yogr + 8(r, f).
s e A

Hence, we get

(n - %)T(r, f) <N, f) +2N(r, %)

+N(r o (f" ) logr + 8(r, f),
which gives
7 - 1
(n - E)T(r,f) <N(r, m) —logr

+5(r, f)- (6)

Since the number of zeros of f* —1 is ¢,
taking multiplicity into account, we have

N(r, ) < glogr +0(1),

f(k)
hence by (6) we obtajn

(n= £)7tr. 1) < OGcg),

which contradicts the hypothesis n > 4.
The proof is complete-
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CAC KHONG DIEM CUA DAO HAM
cUA MOT HAM PHAN HINH P—ADIC

Nguyén Viét Phuong va Trdn Thanh Tung
Dai hoc Kinh té va QTKD - Dat hoc Thdr Nyuyén

Dinh I Picard & deng don gidn nhit khing dinh ring m&i haim phan hinh khéc h¥ng f
trén mit phing phic, nhan tht ci céc gia tri phitc w 6 thé trit ra hai gia trj. Néu f khong
nhgn gis tri w thi w duge goi 1& gi tri bd duge Picard. Nam 1959, Haymen (4] d& tao ra
mpt déi tugng nghien citu quan trong bing vise xem xét céc gis tri phan bd cla cdc da
thic vi phin, tidc 12 néu f 13 m$t ham phén hinh sidu vigt va n € N, thl /™ nhan méi
gia tri hitu han khéc khong v6 han 1an. Gid thuyét Hayman cho thiy réng gia tri bd dugc
Picard hitu han ciia f/f* chi ¢ thé 1a 0. St dung céc k§ thugt trong Ly thuyét Nevanlinna,
chiing t5i chimg minh ring néu véi mat ham phan hinh sigu viét f trong mét truimg dong
dai 56, ddy di vl mot gis tri tuyet déi khong Acsimet K vA cho k € N*, thi ham (fm)®
nhan méi gia tri b € K, b # 0 vo han lin néu » > 4. K&t qué nay clia ching t5i 12 mot tong
quit két qua ciia Ojeda [8] cho da thic vi phan trong trudng hop dao ham cip cao.

Tit khda: Da thitc dao ham, phan bé gia tri, khong Aesimet, ham phan hinh p—adic, cac
gid tri ngoai trit.
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