IMPLICIT ITERATION METHODS HILBERT SPACES

Nguyen Duc Lang University of Sciences, Thainguyen University E-mail: nguyenduclang2002@yahoo.com

 Abstract. In this paper, we introduce new implicit and an explicit iteration methods based on Krasnoselskii-Mann iteration method and a contraction for finding a fixed point of a nonexpansive self-mapping of a closed convex subset of a real Hilbert space.2000 Mathematics Subject Classification: 41A65, 47H17, 47H20, 49J30, 47H06.
Keywords: Metric projection, Nonexpansive mapping, fixed points, Nonexpansive Semigroups, variational inequalities.

1. INTRODUCTION

Let C be a nonempty closed and convex subset of a real Hilbert space H with inner product $(\cdot$,$) and norm \|\cdot\|$ and let T be a nonexpansive self-mapping of C, i.e., $T: C C$ and $\|T x-T y\| \leq\|x-y\|$. Denote the set of fixed points of T by $F(T)$, i.e., $F(T):=\{x \in C: x=T x\}$, and the projection of $x \in H$ onto C by $P_{C}(x)$. In this paper, we assume that $F(T) \neq \emptyset$.

Theorem 1.1. [1] Let C be a nonempty closed convex subset of a Hilbert space H and let T be a nonexpansive self-mapping of C such that $F(T) \neq \emptyset$. Let f be a contraction of C with a constant $\tilde{\alpha} \in\left\{0,1\right.$) and let $\left\{x_{k}\right\}$ be a sequence generated by: $x_{1} \in C$ and

$$
\begin{align*}
x_{k}=\frac{\lambda_{k}}{1+\lambda_{k}} f\left(x_{k}\right)+\frac{1}{1+\lambda_{k}} T x_{k}, \quad k \geq 1 \tag{1.1}\\
x_{k+1}=\frac{\lambda_{k}}{1+\lambda_{k}} f\left(x_{k}\right)+\frac{1}{1+\lambda_{k}} T x_{k}, \quad k \geq 1 \tag{1.2}
\end{align*}
$$

where $\left\{\lambda_{k}\right\} \subset(0,1)$ satisfies the following conditions:
(Li) $\lim _{k \rightarrow \infty} \lambda_{k}=0$;
(L2) $\sum_{k=1}^{\infty} \lambda_{k}=\infty$; and
(L3) $\lim _{k \rightarrow \infty}\left|\frac{1}{\lambda_{k+1}}-\frac{1}{\lambda_{k}}\right|=0$.
Then, $\left\{x_{k}\right\}$ defined by (1.2) converges strongly to $p^{*} \in F(T)$, where $p^{*}=P_{F(T)} f\left(p^{*}\right)$ and $\left\{x_{k}\right\}$ defined by (1.1) converges to p^{*} only under condition (L1).

Note that $p^{*}=P_{F(T)} f\left(p^{*}\right)$ is equivalent to the following variational inequality:

$$
\begin{equation*}
\nu^{*} \in F(T):\left\langle p^{*}-f\left(p^{*}\right), p-p^{*}\right\rangle \geq 0 \quad \forall p \in F(T) \tag{1.3}
\end{equation*}
$$

It is easy to see that the mapping $I-f$, where I denotes the identity mapping in H, is $(1+\bar{\alpha})$-Lipschitsz continuous and ($1-\bar{\alpha}$)-strongly monotone

In this paper, we propose some new modifications of (1.1) and (1.2) that are the implicit algorithm:

$$
\begin{equation*}
x_{t}=T^{t} x_{t}, \quad T^{t}:=T_{1}^{t} T_{0}^{t} \quad \text { and } \quad T^{t}:=T_{0}^{t} T_{1}^{t}, \quad t \in(0,1) \tag{1.4}
\end{equation*}
$$

where T_{i}^{t} are defined by

$$
\begin{align*}
& T_{0}^{t}=\left(1-\lambda_{t} \mu\right) I+\lambda_{L} \mu f, \tag{1.5}\\
& T_{1}^{t}=\left(1-\beta_{t}\right) I+\beta_{t} T,
\end{align*}
$$

where f is a contraction with a constant $\tilde{\alpha} \in[0,1), \mu \in\left(0,2(1-\bar{\alpha}) /(1+\tilde{\alpha})^{2}\right)$ and the parameters $\left\{\lambda_{t}\right\} \subset(0,1)$ and $\left\{\beta_{t}\right\} \subset(\alpha, \beta)$ for all $t \in(0,1)$ and some $\alpha, \beta \in(0,1)$ satisfying the following condtion: $\lambda_{t^{\prime}} \rightarrow 0$ as $t \rightarrow 0$:

We formulate the following facts for the proof of our results.
Lemma 1.1 [2]. (i) $\|x+y\|^{2} \leq\|x\|^{2}+2\langle y, x+y\rangle$ and for any fixed $t \in[0,1]$
(ii) $\|(1-t) x+t y\|^{2}=(1-t)\|x\|^{2}+t\|y\|^{2}-(1-t) t\|x-y\|^{2}, \quad \forall x, y \in H$.

Lemma $1.2[3] .\left\|T^{\lambda} x-T^{\lambda} y\right\| \leq(1-\lambda \tau)\|x-y\|$ for a fixed number $\mu \in\left(0,2 \eta / L^{2}\right), \lambda \in$ $(0,1)$, where $\tau=1-\sqrt{1-\mu\left(2 \eta-\mu L^{2}\right)} \in(0,1)$,

$$
T^{\lambda} x=(I-\lambda \mu F) x
$$

and F is L-Lipschitz contanuous and η-strongly montotone.
Lemma 1.3 (Demuclosedness Principle [4]). Assume that T is a nonexpansive selfmapping of a closed convex subset K bf ia Hibert space H. If T has a fuxed point, then $I-T$ is demiclosed; that is, whenever $\left\{x_{k}\right\}$ is a sequence in K weakly converging to some $x \in K$ and the sequence $\left\{(I-T) x_{k}\right\}$ strongly converges to some y, it follows that $(I-T) x=y$.

2. IMPLICIT ITERATION METHODS

Theorem 2.1. Let C be a nonempty closed convex subset of a real Hilbert space H and $f: C \rightarrow C$ be a contraction with a coefficient $\bar{\alpha} \in[0,1)$. Let T be a nonerpansive self-mapping of C such that $F(T) \neq \emptyset$. Let $\mu \in\left(0,2(1-\bar{\alpha}) /(1+\bar{\alpha})^{2}\right)$. Then, the net $\left\{x_{t}\right\}$ defined by (1.4)-(1.5) converges strongly to the unaque element p^{*} in (1.3).

Proof. First, we consider the case that $T^{t}=T_{1}^{l} T_{0}^{t}$. Clearly, T^{t} is a self-mapping of C and $T_{0}^{t}=I-\lambda_{t} \mu F$ where $F=I-f$. By (1.5) and Lemma 1.2, we have that

$$
\begin{aligned}
\left\|T^{t} x-T^{t} y\right\| & =\left\|T_{1}^{t} T_{0}^{t} x-T_{1}^{t} T_{0}^{t} y\right\| \\
& =\left\|\left(1-\beta_{t}\right) T_{0}^{t} x+\beta_{t} T_{0}^{t} x-\left[\left(1-\beta_{t}\right) T_{0}^{t} y+\beta_{t} T_{0}^{t} y\right]\right\| \\
& =\left\|\left(1-\beta_{t}\right)\left(T_{0}^{t} x-T_{0}^{t} y\right)+\beta_{t}\left(T_{0}^{t} x-\beta_{t} T_{0}^{t} y\right)\right\| \\
& \leq\left\|T_{0}^{t} x-T_{0}^{t} y\right\| \\
& \leq\left(1-\lambda_{t} \tau\right)\|x-y\| \quad \forall x, y \in C
\end{aligned}
$$

where τ is defined in Lemma 1.2 with $\eta=1-\bar{\alpha}$ and $L=1+\tilde{\alpha}$. So, T^{t} is a contraction of C. By Banach's Contraction Principle, there exists a unique element $x_{t} \in C$ such that $x_{t}=T^{t} x_{t}$ for all $t \in(0,1)$.

Next, we show that $\left\{x_{t}\right\}$ is bounded. Indeed, it is easy to see that T_{1}^{t} also is nonexpansive with $T_{1}^{l} p=p$ for a fixed point $p \in F(T)$, and hence

$$
\begin{aligned}
\left\|x_{t}-p\right\| & =\left\|T^{t} x_{t}-p\right\|=\left\|T_{1}^{t} T_{0}^{t} x_{t}-T_{1}^{t} p\right\| \\
& \leq\left\|T_{0}^{t} x_{t}-p\right\| \\
& =\left\|T_{0}^{t} x_{t}-T_{0}^{t} p-\lambda_{t} \mu F(p)\right\| \\
& \leq\left(1-\lambda_{t} t^{t}\right)\left\|x_{l}=p\right\|^{\prime}+\lambda_{t} \mu\|F(p)\| .
\end{aligned}
$$

Therefore,

$$
\left\|x_{t}-p\right\| \leq \frac{\mu}{\tau}\|F(p)\|
$$

that implies the boundedness of $\left\{x_{t}\right\}$ Put $y_{t}=T_{0}^{\prime} x_{t}$. So, the nets $\left\{F\left(x_{t}\right)\right\},\left\{y_{t}\right\}$ also are bounded. Moreover, we also have from (1.4)-(1.5) that

$$
\begin{equation*}
x_{t}=\left(1-\beta_{i}\right) y_{t}+\beta_{t} T y_{t} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{aligned}
\left\|x_{t}-p\right\|^{2} & =\left\|\left(1-\beta_{t}\right) y_{t}+\beta_{t} T y_{t}-p\right\|^{2} \\
& \leq\left\|y_{t}-p\right\|^{2}=\left\|\left(I-\lambda_{t} \mu F\right) x_{t}-p\right\|^{2} \\
& =\left\|x_{t}-p\right\|^{2}-2 \lambda_{t} \mu\left(F\left(x_{t}\right), x_{t}-p\right\rangle+\lambda_{t}^{2} \mu^{2}\left\|F\left(x_{t}\right)\right\|^{2}
\end{aligned}
$$

Thus,

$$
\begin{equation*}
(1-\bar{\alpha})\left\|x_{t}-p\right\|^{2}+\left\langle F(p), x_{t}-p\right\rangle \leq \frac{\lambda_{t} \mu}{2}\left\|F\left(x_{t}\right)\right\|^{2} \tag{2.2}
\end{equation*}
$$

Further, we prove that $\left\|x_{t}-T x_{t}\right\| \rightarrow 0$, as $t \rightarrow 0$. Since $\left\|y_{t}-x_{t}\right\|=\lambda_{t} \mu\left\|F\left(x_{t}\right)\right\| \rightarrow 0$ as $t \rightarrow 0$, because $\lambda_{t} \rightarrow 0$ and $\left\{F\left(x_{t}\right)\right\}$ is bounded. So, we shall prove that $\left\|y_{t}-T y_{t}\right\| \rightarrow 0$, as $t \rightarrow 0$.

Let $\left\{t_{k}\right\} \subset(0,1)$ be an arbitrary sequence converging to zero as $k \rightarrow \infty$ and $x_{k}:=x_{t_{k}}, y_{k}:=y_{t_{k}}=\left(1-\lambda_{k} \mu\right) x_{k}+\lambda_{k} \mu f\left(x_{k}\right)$, where $\lambda_{k}=\lambda_{t_{k}}$. We have to prove that $\left\|y_{k}-T y_{k}\right\| \rightarrow 0$. Let $\left\{x_{t}\right\}$ be a subsequence of $\left\{x_{k}\right\}$ and let $\left\{x_{k_{3}}\right\}$ be a subsequence of $\left\{x_{l}\right\}$ such that

$$
\begin{aligned}
& \lim \sup _{k \rightarrow \infty}\left\|y_{k}-T y_{k}\right\|=\lim _{l \rightarrow \infty}\left\|y_{t}-T y_{t}\right\|, \\
& \lim \sup _{l \rightarrow \infty}\left\|x_{l}-p\right\|=\lim _{j \rightarrow \infty}\left\|x_{k_{j}}-p\right\|
\end{aligned}
$$

From (2.1) and Lemma 1.1, it implies that

$$
\begin{aligned}
\left\|x_{k_{j}}-p\right\|^{2} & =\left\|\left(1-\beta_{k_{j}}\right)\left(y_{k_{j}}-p\right)+\beta_{k_{j}}\left(T y_{k_{j}}-p\right)\right\|^{2} \\
& \leq\left\|y_{k_{j}}-p\right\|^{2}=\left\|\left(I-\lambda_{k_{j}} \mu F\right) x_{k_{j}}-p\right\|^{2} \\
& \leq\left\|x_{k_{j}}-p\right\|^{2}+2 \lambda_{k} \mu\left\|F\left(x_{k_{j}}\right)\right\|\left\|y_{k_{,}}-p\right\| .
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\lim _{j \rightarrow \infty}\left\|x_{k_{j}}-p\right\|=\lim _{j \rightarrow \infty}\left\|y_{k,}-p\right\|, \tag{2.3}
\end{equation*}
$$

since $\lambda_{k_{j}} \rightarrow 0$ and $\left\{F\left(x_{k_{j}}\right)\right\},\left\{y_{k_{j}}\right\}$ are bounded. Again, by Lemma. 1.1, we have that

$$
\begin{aligned}
\left\|x_{k_{2}}-p\right\|^{2}= & \left(1-\beta_{k_{2}}\right)\left\|y_{k_{2}}-p\right\|^{2}+\beta_{k_{j}}\left\|T y_{k_{2}}-p\right\|^{2} \\
& -\beta_{k_{j}}\left(1-\beta_{k_{j}}\right)\left\|y_{k_{2}}-T y_{k_{2}}\right\|^{2} \\
\leq & \left(1-\beta_{k_{j}}\right)\left\|y_{k_{2}}-p\right\|^{2}+\beta_{k_{,}}\left\|y_{k_{j}}-p\right\|^{2} \\
& -\beta_{k_{j}}\left(1-\beta_{k_{2}}\right)\left\|y_{k_{j}}-T y_{k_{2}}\right\|^{2}
\end{aligned}
$$

Then, we have

$$
\alpha(1-\beta)\left\|y_{k,}-T y_{k}\right\|^{2} \leq\left\|y_{k_{2}}-p\right\|^{2}-\left\|x_{k}-p\right\|^{2}
$$

This together with (2.3) implies that

$$
\lim _{j \rightarrow \infty}\left\|y_{k_{j}}-T y_{k_{j}}\right\|^{2}=0
$$

Consequently, $\left\|y_{t}-T y_{t}\right\| \rightarrow 0$ as $t \rightarrow 0$.
Let $\left\{x_{k}\right\}$ be any sequence of $\left\{x_{t}\right\}$ converging weakly to \tilde{p} as $k \rightarrow \infty$. Then, $\| x_{k}-$ $T x_{k} \| \rightarrow 0$. By Lemma 1.3, we have $\tilde{p} \in F(T)$ and from (2.2), it follows that

$$
\langle F(p), p-\tilde{p}\rangle \geq 0 \quad \forall p \in F(T)
$$

Since $p, \tilde{p} \in F(T)$ which is a closed convex subset, by replacing p by $t p+(1-t) \tilde{p}$ in the last inequality, dividing by t and taking $t \rightarrow 0$ in the just obtained inequality, we obtain

$$
\langle F(\tilde{p}), p-\tilde{p}\rangle \geq 0 \quad \forall p \in F u x(T)
$$

The uniqueness of p^{*} in (1.3) guarantees that $\tilde{p}=p^{*}$. Again, replacing p in (2.2) by p^{*}, we obtain the strong convergence for $\left\{x_{t}\right\}$.

The case that $T^{t}=T_{0}^{t} T_{i}^{l}$ is proved similarly. T^{t} is also a contraction S, there exists a unique x_{t} for each $t \in(0,1)$ such that $x_{t}=T_{0}^{t} T_{1}^{t} x_{t}$ and $\left\{x_{t}\right\}$ is bounded. Put $y_{t}=T_{1}^{i} x_{t}$. Then, the nets $\left\{F\left(y_{t}\right)\right\}$ and $\left\{y_{t}\right\}$ are also bounded. Further, (2.1) and (2.2) are replaced by

$$
\begin{aligned}
& x_{t}=\left(I-\lambda_{t} \mu F\right) y_{t}, \quad \text { and } \\
& (1-\tilde{\alpha})\left\|_{y_{t}}-p\right\|^{2}+\left\langle F(p), y_{t}-p\right\rangle \leq \frac{\lambda_{t} \mu}{2}\left\|F\left(y_{t}\right)\right\|^{2}
\end{aligned}
$$

respectively. From the last equality, the boundedness of $\left\{F\left(y_{t}\right)\right\}$ and $\lambda_{t} \rightarrow 0$, it follows that $\left\|x_{t}-y_{t}\right\| \rightarrow 0$ as $t \rightarrow 0$. Next, we prove that $\left\|x_{t}-T x_{t}\right\| \rightarrow 0$ as $t \rightarrow 0$. Let $\left\{t_{k}\right\} \subset(0,1)$ be an arbitrary sequence converging to zero as $k \rightarrow \infty$ and $x_{k}:=x_{t_{k}}$. We have to prove that $\left\|x_{k}-T x_{k}\right\| \rightarrow 0$. Let $\left\{x_{l}\right\}$ be a subsequence of $\left\{x_{k}\right\}$ and let $\left\{x_{k}\right\}$ be a subsequence of $\left\{x_{i}\right\}$ such that

$$
\begin{aligned}
& \lim \sup _{k \rightarrow \infty}\left\|x_{k}-T x_{k}\right\|=\lim _{l \rightarrow \infty}\left\|x_{l}-T x_{l}\right\| \\
& \lim \sup _{l \rightarrow \infty}\left\|x_{l}-p\right\|=\lim _{j \rightarrow \infty}\left\|x_{k_{3}}-p\right\|
\end{aligned}
$$

Further, the process of proof is similar as in the case that $T^{t}=T_{1}^{t} T_{0}^{d}$. This completes the proof.

References

[1] A. Moudafi, Viscosity approximation methods for fixed-point problems, J. Math. Anal. Appl. 241 (2000) 46-55.
[2] G. Marino aud H.K. Xu, Weak and strong convergence theorems for stric pseudocontractions in Hilbert spaces, J. Math Anal. Applic. 329 (2007) 336-346.
[3] Y. Yemada, The hybrid stecpest descent method for variational inequalities problems over the intesection of the fixed point sets of nonexpansive mappings, tnhently parallel algorithms in feasibility and optimization and their applications, Edited by D. Butnariu, Y. Censor, and S. Reich, North-Holland, Amsterdam, Holland, pp. 473-504, 2001.
[4] K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory, Cambridge Studies in Advanced Math., V. 28, Cambridge Univ. Prcss, Cambridge 1990.

Phương pháp lặp ẩn trong không gian Hilbert

Nguyē̃n Dức Lạng
Trường Dại học Khoa học - Đại học Thái Nguyên

Tóm tắt

Troug bài báo này, chúng tôi đưa vào các phương pháp lạ̣p ẩn dưa trên phương pháp lập Krasnoselskii-Mann co tìm điểm bất động cẳc ánh xạ không giân từ một tập con lồi, đóng trong không gian Hilbert thưe vào chính nó 2000 Mathematics Subject Classification: $41 \mathrm{~A} 65,47 \mathrm{H} 17,47 \mathrm{H} 20,49 \mathrm{~J} 30$, 47H06.
Keywords: Metric, xạ khōng giãn, Nửa nhớm khōng giân, Diển bất động, Bất đẵng thức biến phần.

