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Abstract. In this paper, we introduce new implicit and an explicit iteration methods
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1, INTRODUCTION

Let € be a nonempty closed and convex subset of a real Hilbert space A with inner
product ¢:,-} and norm || - || and let T be a nonexpansive self-mapping of C, ie.,
T:CC and ||Tz — Ty|| € [Jz — y||- Denote the set of fixed points of T by F(T), i.e,,
F{T) := {z € C : z = Tz}, and the projection of z € H onto C by Fc{z). In this
paper, we assume that F(T) # 0.

Theorem 1.1. [1] Let C be o nonempty closed convez subset of o Hilbert space H and
let T be a nonezpansiwe self-mapping of C such that F(T) # 0. Let f be a contraction
of C with o constant & € [0,1) and let {xs} be a sequence generated by: x, € C and

pye 1
= — Tx, k21, 11
T 1+)\kf(1k)+ T+ T, Z (11)
Ak 1
[N, —T: k>1, 1.2
Tyl 1+/\kf($k)+l+)‘k Tk, > (1.2)

where {M\} C (0,1) satisfies the following conditions:
(L1) limy o0 Ax = 5
(L2) 352, Ak = 00; and

.

1
Aerr A

{L3) limy o0

Then, {zx} defined by (1.2) converges strongly to p* € F(T), where p* = Pray f(p*)
and {z;} defined by (1.1) converges to p* only under condition (L1).

Note that p* = Prer) f(p") is equivalent to the following variational inequality:
pEFT) b - fg') p—p') 20 W€ F(T). (1.3)

It is easy to see that the mapping I — f, where I denotes the identity mapping in H,
is (1 + &)-Lipschitsz continuous and (1 — &)-strongly monotone.
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In this paper, we propose some new modifications of (1.1) and (1.2) that are the
implicit algorithm: 5

=Tz, T':=TiT{ and T*=TTL, te(0,1) (1.4)
where T} are defined by
Tp = (1= )] + Asf,
TH= (1~ BT + AT, )
where £ is a contraction with & constant & € [0,1), € (0,2(1 — &)/(1 + &)2) and the ’
parameters {A,} C (0,1) and {A;} C (e, 8) for all t € (0,1) and some e, 3 € (0,1)

satisfying the following condition: A, —+ 0 as ¢t — 0:
‘We formulate the following facts for the proof of our results.

Lernma 1.1 [2]. (i) ||z + v]* < ||=/? + 20y, 3 +y) and for any fized t € [0, 1]
(i) (1 - D+ gl = (L- )zl + eyl - (1 = tllz — g, Vz,y € A

Lemma 1.2 [3]. [P*z = T*y|| < (1= X7)|lz —y]| for o fived number i € (0,2n/L%),x €
(0,1), where 7 = 1 — /1 — u(2n— uI?) € (0,1),

Ty = (I - AuF)z
and F' 15 L-Lipschilz continuous and n-strongly monotone.

Lemma 1.3 (Demaclosedness Principle (4]). Assume that T s ¢ nonespansive self-
mapping of o closed conver subset K bfia Hibert space H. If T has a fuved point, then =
I — T 15 demiclosed; that is, wh {zx} is a sequence in K weakly converging to "
some x € K and the sequence {(I — T)zy} strongly converges to some y, it follows that -
{-Tz=y. -

2. IMPLICIT ITERATION METHODS

Theorem 2.1. Let C be a nonemply closed conver subset of a real Hilbert space H
and f : C — C be a contraction with @ coefficient & € {0,1). Let T' be e nonezpansive
self-mapping of C such that F(T) # 0. Let 4 € (0,2(1 — &)/(1 + &)?). Then, the net
{x:} defined by (1.4)-(1.5) converges strongly to the uraque element p* in (1.3).
Proof. First, we consider the case that ¢ = T{TE. Clearly, T* is a sclf-mapping of C
and T = I — AuF where F =1 — f. By (1.5) and Lemma 1.2, we have that

IT'z ~ Tyl = | T T3z — TiTgul
= [l(1 - B)Tiz + B.Tgw — [(1 — B)Toy + B.Tgyl|
=|I(1 — Be)(Tw — Tiy) + Bu(T5 — B.T5w)
. < | T — Toyl
<(1-Xnr)|z—vyl vYz.y€C,

1

where 7 is defined in Lemma 1.2 withn7=1—& and L = 1+ &. So, T* is a contraction
“'of C. By Banach’s Contraction Principle, there exists a unique element z, € € such
that z, = T*a, for all ¢ € (0,1).
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Next, we show that {z.} is bounded. Indeed, it is easy to see that T} also is nonex-
pansive with Tfp = p for a fixed point p € F(T), and hence
= |T%; — pll = | T3 T3z — Tl
< Iz — 2|l
= | T3z — Top — ApF ()]
< (1= X7 gl + Al F(p)

1z — ol

.
Therefore,
7
llee = pll < 2@
that implies the boundedness of {z,} Put y, = Tiz,. So, the nets {F(z.,)}, {w]} also
are bounded. Moreover, we also have from (1.4)-(1.5) that

2= (1~ By + BT, (2.1)

e = pl* = (2 = B+ BTy —plI*
< flye =2l = T = MepeF)eze — pll®
= ||z = plI* = 2AplF(za), m — p) + NI F (@)
Thus,
- A
(1= &z~ 3l + (F(p), 2~ p) < S| Fa]” (2:2)

Further, we prove that |z, — Tx;j| — 0, as t — 0. Since ||y, — z,f) = Apl| F(zy))| = 0 as
t -+ 0, because A, — 0 and {F(z:)} is bounded. So, we shall prove that [ly; — Tw:|| -+ 0,
ast— 0.

Let {tx} € (0,1) be an arbitrary sequence converging to zero ss k — ©o and
T = Ty, Uk = Yy, = (1 — dap)zi + Aeprf(2e), where Ae = Ay, We have to prove that
|l — Tyx|| = 0. Let {z;} be a subsequence of {zx} and let {z,} be a subsequence of
{z:} such that
lim sup g — Tyl = lim |l — T,
k—oo =00
lim sup f}a = pl| = Jim, I, 2l
From (2.1) and Lemma 1.1, it implies that
llzi, — pIi? = (1 = B, )(ute, — ) + Br, (Tn, — 2
< o, =l = 1T = A, F)a, — 9P
< llax, = 2lI” + 22, 2l Flze )y, — -
Therefore,
Jim llzs, - pll = lim Jlys, 2l (23)
since Ay, — 0 and {F{z+,)},{vs,} are bounded. Again, by Lemma 1.1, we have that
lls, = 2l = (1 = B, llwe, — pII? + Br, | T, — I
= B, (1~ Be, [, — Ty, I ‘
< (1= B)llw, = ol + B, s, — 2II”

= B, (1~ B,lluk, ~ T, I »
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Then, we have
(1 = B)llwk, — Toe, I* < llww, — pI* — |z, — plI%
This together with (2.3) implies that
Jim lge; = T, I = 0.

Consequently, Jy, — Tyl = 0ast = 0.

Let {z} be any sequence of {z;} converging weakly to p as & — ¢0. Then, l2e —
Tix|| = 6. By Lemma 1.3, we have § € F(T) and from (2.2), it follows that
(Fp).p—5 20 Vpe F(T).

Since p,§ € F(T) which is a closed convex subset, by replacing p by tp + (1 — t)p in
the last inequality, dividing by ¢ and taking ¢ — 0 in the just obtained inequality, we
obtain

(F(H),p—P) 20 Vpe Fu(T).
The uniqueness of p* in (1.3) guarantees that § = p*. Again, replacing p in (2.2) by p*,
we obtain the strong convergence for {a;}.

The case that 7% = TET? is proved similerly. 7° is also a contraction So, there
exists a unique z, for each t € (0,1) such that », = T{T}x, and {z,} is bounded. Put
9 = T{x,. Then, the nets {F(y;)} and {3} are also bounded. Further, {2.1} and (2.2)
are replaced by

zy=({ - ApF)y, and

(1~ @llye = pI® + (F(p).ye —p) < %ﬂllF’(ye)II”,

respectively. From the last equality, the boundedness of {F(y)} and A, — 0, it follows
that |lz; — /] = 0 as t — 0. Next, we prove that ||z, — Tz]| — 0, as £ — 0. Let
{tx} C (D,1) be an arbitrary sequence converging to zero as k — oo and zy = z;,. We
have to prove that [jzx — Tzy[| — 0. Let {x,;} be a subsequence of {x;} and let {zy,}
be a subsequence of {z;} such that

lim sup ||z — Tae|| = lim )iz — Tzl
k100 il

lim sup [}z = pll = lim =i, ~ 2l
{—00 Jmroa

Further, the process of proof is similar as in the case that T* = T{T¢. This completes
the proof.
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