SHRINKING PROJECTION AND MODIFIED IIYBRID DOUGLAS-RACHFORD SPLITTING METHOD FOR. MONOTONE INCLUSIONS IN HILBERT SPACES

Nguyen Buong
Instatute of Information Technology. Vietnam Academac of Scaences and Technoloqu, Vietnam Lam Thuy Duong ${ }^{1}$, Nguyen Duy Phuong
Thar Nguyen University of Educaizon, Thai Ngayen Utuversidy, Vetnam.

Abstract

In this paper, in order to find a zero for a monotone inclusion in Hilbert spaces,

 we introduce shrinking projection and hybrid Douglas-Rachford splitting uncthods, based on the Takahashi et. al sarinking method for nonexpansive mapping: hybrid method ir mathematical programming and Douglas-Rachford splitting method.Keywords: Nonexpansive mapping; fixed pont; shrinkang projection; hyorid splitting method; monotone mapping.

MSC(2010): Primary: 47J05, 47H09; Secondary: 49J3U.

1 Introduction and preliminaries

Let H be a real Hilbert space with inner product \langle,$\rangle and norm \|\cdot\|$. Let T be a maximal monotone nonlinear mapping in H, that is, T is monotone, i.e., T satisfies the condition: $\langle u-v, x-y\rangle \geq 0$ for $u \in T(x), v \in T(y)$ with x, y in the domain of T, and, in addition, the graph of T is not included in the graph of eny other monotone mapping.

The problem, studied in this paper, is to find a zero for the monotone inclusion

$$
\begin{equation*}
0 \in T(x) \quad T=A+B \tag{1.1}
\end{equation*}
$$

where A and B are maximal monotone in H.
A fundamental algorithm for finding a root of a maximal monotone mapping T is the proximal point algorithm: $x_{1} \in H$ and

$$
\begin{equation*}
x_{k+1}=J_{\tau_{k}}^{T} x_{k}, \quad k=0,1, \cdots, \tag{1.2}
\end{equation*}
$$

where $J_{r_{k}}^{T}=\left(I+r_{k} T\right)^{-1}$ and $\left\{r_{k}\right\} \subset(0, \infty)$ and I denotes the identity mapping in H. This algorithm was firstly introduced by Martinet [1]. In [2], Rockafellar proved that if $\lim _{\inf _{k \rightarrow \infty} \dot{r_{k}}}>0$ and $T^{-1} 0 \neq \emptyset$, then the sequence $\left\{x_{k}\right\}$, defined by (1.2), converges weakly to a solution of (1.1). In [3], Guler showed that it converges only weakly in infinite dimentional space H. Note that, in many cases, for a fixed $\gamma>0, I+\gamma T$ is bard to invert, but $I+\gamma A$ and $I+\gamma B$ are easier to invert than $I+\gamma T$ where $T=A+B$ and A, B are two maximal monotone mappings. Splitting methods for problem (1.1) are algorithms that do not attempt to cvaluace the resolvant $(I+\gamma T)^{\mathbf{- 1}}$, but instead perform a sequence of calculations involving only the resolvants $(I+\gamma A)^{-1}$ and $(I \mid \gamma B)^{-1}$. Such an approach is inspired by well-cstablished techniques from numerical linear algebra (see, [4]). Monotone

[^0]operator splitting algorithms have extensive literature, all of which can essentially be devided into four principal classes: forward-backward class (see, [5]-[8]) double-backward (see, $[7]$ and (9)), Peaceman-Rachford (see, [10]), and Douglas-Rachford (see [10]-[13]). To the best of our knowledge, all of Douglas-Rachford splitting methods only produce weakly convergent iterative sequences. Moreover, the weak cluster points of these weakiy convergent iterative sequences only solve some fixed points equation, but not the original monotone inclusion problem. For example, see [8].
Theorem 1.1. If A, B are maximal monotone mappangs in a Halbert space H and the solution set of $0 \in A x+B x$ is nonemply. Let λ_{k} be a sequence in $[0,2]$ such that $\sum_{k \in \mathbb{N}} \lambda_{k}\left(2-\lambda_{k}\right)=\infty$, let $\gamma \in \mathbb{R}_{++}$, and let $x_{0} \in H$. Set
\[

$$
\begin{align*}
& y_{k}=J_{\gamma}^{B} x_{k}, \\
& z_{k}=J_{\gamma}^{A}\left(2 y_{k}-x_{k}\right), \tag{1.3}\\
& x_{k+1}=x_{k}+\lambda_{k}\left(z_{k}-y_{k}\right) .
\end{align*}
$$
\]

Then, there exists $x \in \operatorname{Fix}\left(R_{\gamma}^{A} R_{\gamma}^{B}\right) x \in \operatorname{Fix}\left(R_{\gamma}^{A} R_{\gamma}^{B}\right)$ such that:
(i) $J_{\gamma}^{B} x \in Z \operatorname{er}(A+B)$;
(ii) $\left(x_{k}\right)$ converges weakly to x;
(uv) $\left(y_{k}\right)$ converges weakly to $J_{\gamma}^{B} x_{\text {; }}$
(v) $\left(z_{k}\right)$ converges weakly to $J_{\gamma}^{B} x$,
where $R_{\gamma}^{D}=2 J_{\gamma}^{D}-I$ for mapping D in H.
Kecently, Zhang and Cheng proved [14] that $J_{\gamma}^{B} x_{k}$ converges weakly to a zero of $A+B$, assumed to be maximei monotone With the additional assumption, they also obtained strong convergent result, by combining the method with Haugazeau's method [15].

Clearly, method (1.3) can be rewritten in the form

$$
x_{k+1}=S(1 / 2) x_{k}
$$

where

$$
S(\alpha)=\alpha T+(1-\alpha) I, T=\left(R_{\gamma}^{A} R_{\gamma}^{B}\right),
$$

with nonexpansive mappings T, since R_{γ}^{A} and R_{γ}^{B} are nonexpansive (see [9]). We also know in $[8]$ that $J_{2}^{B} \operatorname{Fix}(T)=\mathrm{Zcr}(A+B)$. It is well-known know that a sequence $\left\{x_{k}\right\}$, generated by Krasnoselski-Mann method:

$$
x_{k+1}=\left(1-\alpha_{k}\right) x_{k}+\alpha_{k} T x_{k},
$$

only converges weakly to an element of $\operatorname{Fix}(T)$, assumed to be nonempty, if $\alpha_{k} \in[0,1]$ such that

$$
\sum_{k \in \mathrm{~N}} \alpha_{k}\left(1-\alpha_{k}\right)=+\infty
$$

In order to obtain convergent result, using Solodov and Svaiter's approach [16], Nakajo and Takahashi, in [17], introduced the following algorithm:

$$
\begin{align*}
x_{1} & \in C, \text { any element } \\
y_{k} & =a_{k} x_{k}+\left(1-\alpha_{k}\right) T x_{k}, \\
C_{k} & =\left\{z \in C:\left\|z-y_{k}\right\| \leq\left\|z-x_{k}\right\|\right\}, \tag{1.4}\\
Q_{k} & =\left\{z \in C:\left\langle x_{k}-z_{1} x_{1}-x_{k}\right\rangle \geq 0\right\}, \\
x_{\varepsilon+1} & =P_{C_{k} \cap Q_{k}}\left(x_{1}\right), k=1,2, \cdots,
\end{align*}
$$

where $\left\{x_{k}\right\} \subset[0,1]$ satisfies limsup $\lim _{k \rightarrow \infty} \alpha_{k}<1$. Developing the idea, in [18], in order to find a fixed point of a nonexpansive mapping T on a closed convex subsct C in H, Takahashi introduced an alternative projection method:

$$
\begin{align*}
x_{0} & =x \in C:=C_{0}, \\
y_{k} & =\alpha_{k} x_{k}+\left(1-\alpha_{k}\right) T x_{k}, \\
C_{k+1} & =\left\{z \in C_{k}:\left\|y_{k}-z\right\| \leq\left\|x_{k}-z\right\|\right\}, \tag{1.5}\\
x_{k+1} & =P_{C_{k+1}}(x), k=1,2, \cdots,
\end{align*}
$$

which is called the shrinking projection method. They proved the strong convergence of this sequence to $P_{F a x(T)} x$, if $\alpha_{k} \in[0, a]$ for all $k \geq 0$ and $a \in(0,1)$. See, also [19].

In this paper, motivated by the results (1.3) - (1.5), without assuming $A+B$ to be maximal monotone, we introduce two new itcration methods. The first method is constructed as follows:

$$
\begin{align*}
x_{0} & \in H_{0}=H, \text { any element } . \\
y_{k} & =J_{\gamma}^{B} x_{k}, \\
z_{k} & =J_{\gamma}^{A}\left(2 y_{k}-x_{k}\right), \tag{1.6}\\
v_{k} & =x_{k}+\epsilon_{k}\left(z_{k}-y_{k}\right), \\
H_{k+1} & =\left\{z \in H_{k}:\left\|\nu_{k}-z\right\|^{2} \leq \mid p_{k}-z \|^{2}\right\}, \\
x_{k+1} & =P_{H_{k+1}} f\left(p_{k}\right), k \geq 0,
\end{align*}
$$

where f is a Meir-Keeler contraction (see, [20]) in H and sequence $\left\{\epsilon_{k}\right\}$ satisfies the conditions $0<\underline{\varepsilon} \leq \epsilon_{k}<2$. As in [21], the second method is discribed in the form:

$$
\begin{align*}
x_{0} & \in H, \text { any element, } \\
y_{k} & =J_{\gamma}^{B} x_{k}, \\
z_{k} & =J_{\gamma}^{A}\left(2 y_{k}-x_{k}\right), \\
v_{k} & =x_{k}+\epsilon_{k}\left(z_{k}-y_{k}\right), \tag{1.7}\\
H_{k} & =\left\{z \in H_{k}:\left\|v_{k}-z\right\| \leq\left\|x_{k}-z\right\|\right\} . \\
W & = \begin{cases}H, & \text { if } k=0 \\
\left\{z \in W_{k-1}:\left\langle f\left(x_{k-1}\right)-x_{k}, x_{k}-z\right\rangle \geq 0\right\}, & \text { if } k \geq 1,\end{cases} \\
x_{k+1} & =P_{H_{k} \cap W_{k}} f\left(x_{k}\right), k \geq 0 .
\end{align*}
$$

Recall that mapping f in a metric space X with distance $d(x, y)$ is said to be a Mcir-Koeler contraction, if for every $\epsilon>0$ there exists a number $\delta>0$ such that for each $x . y \in X$, $\epsilon \leq d(x, y) \leq \epsilon+\delta$ implies that $d(f(x), f(y)) \leq \epsilon$.

We will make use the following well-known results.
Lemma 1.1. (see [8]). Let C be a non-empty, closed and conver subset in H. Then, we have:

$$
z=P_{C}(x) \Leftrightarrow\langle z-x, u-z\rangle \geq 0 \quad \forall u \in C, \forall x \in H
$$

where $P_{C}(x)$ denotes the metric projecton of x onto C.
Proposition 1.1. (sce, [8], Coroilary 25.5). Let m be an integer such that $m \geq 2$, set $I=\{1,2, \cdots, m\}$, and let $\left(A_{i}\right)_{\in \in I}$ be maxamally monotone mappings from a Hilbert
space H to 2^{H}. For every $i \in I$, let $\left(x_{1, k}, u_{i, k}\right)_{k \geq 1}$ be a sequence in the $G p h A_{1}$ and let $\left(x_{i}, u_{i}\right) \in H \times H$. Suppose that

$$
\sum_{i \in I} u_{\mathrm{t}, \mathrm{k}} \rightarrow 0, \text { and } x_{2, k} \xrightarrow{\stackrel{\sim}{x}} x_{i} ; u_{i, k} \xrightarrow{u_{u}} u_{i} \quad m x_{i, k}-\sum_{\jmath \in I} x_{\jmath, k} \rightarrow 0 .
$$

Then, there exits $x \in \operatorname{zer} \sum_{i \in I} A_{2}$ such that the following hold:
(i) $x=x_{1}=\cdots=x_{m}$;
(ii) $\sum_{i \in I} u_{i}=0$;
(iii) $\forall i \in I_{1}\left(x_{i}, u_{i}\right) \in G p h A_{i}$.

2 Main Results

We prove the following results.
Theorem 2.1. If A, B are maxmal monotone mappings in Hilbert H such that the solution set of $0 \in A x+B x$ is nonempty, then the sequence $\left\{x_{k}\right\}$, defined by (1.6) with $0<$ $\underline{\epsilon} \leq \epsilon_{k}<2$ converges strongly to some u_{*} such that $J_{\gamma}^{B} x_{k}$ converges to $J_{\gamma}^{B} u_{*} \in Z \operatorname{er}(A+B)$.

Proof. i) We prove that x_{k} is defined for all $k \geq 0$.
Clearly, H_{k} is a closed and convex subset in H for all $k \geq 0$. We prove that $H_{k} \neq 0$. As mentioned above, $J_{\gamma}^{B} \operatorname{Fix}(T)=\operatorname{Zer}(A+B) \neq \emptyset$, and hence $\operatorname{Fix}(T) \neq \emptyset$. On the other hand,

$$
\begin{equation*}
v_{k}=(1-\epsilon / 2) x_{k}+\epsilon_{k} T x_{k} / 2 . \tag{2.1}
\end{equation*}
$$

Therefore, for any $p \in \operatorname{Fix}(T)$, we have

$$
\left\|v_{k}-p\right\| \leq(1-\epsilon / 2)\left\|x_{k}-p\right\|+\epsilon_{k}\left\|T x_{k}-T p\right\| / 2 \leq\left\|x_{k}-p\right\|,
$$

which implies that $H_{k} \neq \emptyset$. It means that x_{k} is well defined for each $k \geq 0$.
ii) We show that there exists an element $\tilde{p} \in H$ such that $x_{k} \rightarrow \tilde{p}$ as $k \rightarrow \infty$.

Consider the mapping $U_{*}=P_{\cap_{i \geq 0}} H_{i} f$. Since P_{C} is nonexpansive for any closed and convex subset C and f is a Meir-Keeler contraction, the mapping U_{*} is also a Meir-Keeler contraction. Therefore, there exists an element $\tilde{p} \in \Pi_{2 \geq 0} H_{i}$ with $\tilde{p}=U_{*} \tilde{p}$. Put $\bar{z}_{k}=$ $P_{H_{k}} f(\tilde{p})$. Then; $\tilde{z}_{k} \rightarrow \tilde{p}$ as $k \rightarrow \infty$, (see [22]). This fact and the convergence of $\left\{x_{k}\right\}$ to \tilde{p} were proved also in [21].
iii) We prove that $\tilde{p} \in \operatorname{Fix}(T)$.

First, note that $x_{k+1} \in H_{k+1}$. By definition, $\left\|v_{k}-x_{k+1}\right\| \leq\left\|x_{k}-x_{k+1}\right\| \rightarrow 0$. Consequently, $\left\|v_{k}-x_{k}\right\| \leq 2\left\|x_{k}-x_{k+1}\right\| \rightarrow 0$. Now, from (2.1) it follows that $\left\|x_{k}-T x_{k}\right\| \leq$ $2\left\|v_{k}-x_{k}\right\| / \bar{\epsilon} \rightarrow 0$. Therefore, $\tilde{p} \in \operatorname{Fix}(T)$.
iv) $y_{k} \rightarrow J_{\gamma}^{B} \tilde{p}$ that थs a solution of $0 \in A x+B y$.

From (1.6), we have that $\left\|z_{k}-y_{k}\right\|=\left\|v_{k}-x_{k}\right\| / \epsilon_{k} \leq\left\|v_{k}-x_{k}\right\| / \epsilon \rightarrow \mathbf{0}$. On other hand,

$$
\left\{\left(y_{k}, x_{k}-y_{k}\right)\right\} \subset G p h(\gamma B),\left(x_{k}, u_{k}\right) \xrightarrow{w}\left(J_{\gamma}^{B} \bar{p}, \bar{p}-J_{\gamma}^{B} \bar{p}\right), u_{k}=x_{k}-y_{k},
$$

$\left\{\left(z_{k}, 2 y_{k}-x_{k}-z_{k}\right)\right\} \subset G p h(\gamma A),\left(z_{k}, w_{k}\right) \xrightarrow{w}\left(J_{\gamma}^{B} \tilde{p},-\tilde{p}+J_{\gamma}^{B} \tilde{p}\right), w_{k}=2 y_{k}-x_{k}-z_{k},\left\|u_{k}+w_{k}\right\| \rightarrow 0$.

By Proposition 1.1, $J_{\gamma}^{B} \bar{p} \in \operatorname{Zer}(A+B)$. This completes the proof.
Theorem 2.2. Let A, B and $\left\{c_{k}\right\}$ be as in Theorem 2.1. Then, we have the same conclusion for $\left\{x_{k}\right\}$, defined by (1.7).

Proof. Clearly, H_{k} and W_{k} are closed convex subsets of H and $\operatorname{Fix}(T) \subset H_{k}$ for all $k \geq 0$. We prove that $\operatorname{Fix}(T) \subset W_{k}$ for every $k \in \mathbb{N}$ and a sequence $\left\{x_{k}\right\}$ is well defined. We have $W_{0}=H_{t}$ so $\operatorname{Fix}(T) \subset W_{0}$. We shall prove this fact by mathematical induction. Suppose that $F i x(T) \subset H_{n} \cap W_{n}$ for some $n \in \mathbb{N}$. We prove that $\operatorname{Fix}(T) \subset H_{n+1} \cap W_{n+1}$. Since $\operatorname{Fix}(T) \subset H_{n} \cap W_{n}$ there exists a unique element $\dot{x}_{k}+1=$ $P_{H_{k} \cap W_{k}} f\left(x_{k}\right)$, and hence, $\left\langle f\left(x_{k}\right)-x_{k+1}, x_{k+1}-p\right\rangle \geq 0$ for all $p \in H_{n} \cap W_{n}$, which implies that $\left\langle f\left(x_{k}\right)-x_{k+1}, x_{k+1}-p\right\rangle \geq 0$ for all $p \in \operatorname{Fix}(T)$. Thus, $\operatorname{Fix}(T) \subset W_{n+1}$. Since $P_{n_{2,0}} W_{i} f$ is a Meir-Keeler contraction in H, there exists an element $\bar{p} \in H$ such that $\tilde{p} \in \cap_{i \geq 0} H_{i}$ with $\tilde{p}=P_{n_{i} \geq 0} W_{i} f(\tilde{p})$. Put $\vec{z}_{k}=P_{H_{k}} f(\tilde{p})$. Then $\tilde{z}_{k} \rightarrow \tilde{p}$ as $k \rightarrow \infty$. The left arguments as in the proof of Theorem 2.1. This completes the proof.
Acknowledgements: This research is funded by Vietnamese National Foundation of Sciences and Technology Development under grant number 101.02-2012.04(16 - mathematics).
References
[1] B. Martinet, Regularisation d'inequations variationelles par approximations succivees, Revue Francaise d'Informatiques et de Recherche Operationelle, (1970) 154-159.
[2] R.T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optimn 14 (1976) 877-898.
[3] O. Guler, On the convergence of the proximal point algorithm for convex minimization, SIAM J. Control Optim. 29 (1991) 403-419.
[4] G.I. Marchuk, Methods of Numercial Mathesmatic, Springer, New York, 1975.
[5. D. Gaby, Applications of the method of multipliers to variational incqualitics, in: M. Fortin and R. Glowinski, eds., Augmented Lagragian Methods: Applhcations to the Solutzon of Bounty Value Problems , (North-Holland, Amsterdann, 1983).
[6] C.B. Passty, Ergodic convergence to a zero of the sum of monotone operators in Hilber spaces, J. Math. Anal. Appl. 72 (1979) 383-390.
[7] P. Tseng, Applications of a splitting algorithm to decomposition in convex programming and variational inequalities, SIAM J. Control Optim 29(1) (1991) 119-138.
[8] H.H. Bauschke, P.L. Combettes, Convex Analysis and Monotone operator Theory in Hibert Spaces, Springer, 2011.
[9] L.P. Lions, Une mesthode iterative de resolution dume inequation variationelle, Israel J. Math. 31 (1978) 204-208.
[10] L.P. Lions, B. Mercier, Splitting algorithms for the sum of two nonlinear operators, SIAM J. Numer. Anal. 16 (1979) 964-979.
[11] J. Eckstein, F.F. Svaiter, A family of projective splitting methods for the sum of two monotone operators, Math. Program. Ser. 1111 (2008) 173-199.
[12] B.F. Svaiter, On weak convergence of the Douglas-Rachford method. SIAM J. Control Optim. 49(1) (2011) 280-287.
[13] J. Douglas, H. Rachford, On the numerical solution of heat conduction problem in two and three spaces variables, Trans. Amer. Math. Soc. 82 (1956) 421-439.
[14] H. Zhang, L. Cheng, Projective splitting methods for sum of maximal monotone operators with applications, J. Math. Anal. Appl. 406 (2013) 323-334.
[15] Y. Hangazeau, Sur le Inquations Varialtionnelles et Ia Minimization de Functionnelles Convexes, in: These de Doctorat, Universit de Paris, France. 1968.
[16] M.V. Solodov, B.F. Svaiter, Forcing strong convergence of proximal point iterations in Hilbert spaces, Math. Program. 87 (2000) 189-202.
[17] K. Nakajo, W. Takahashi, Strong convergence theorem for nonexpansive mappings and nonexpansive semigroups, J. Math. Anal. Appl. 279 (2003) 372-378.
[18] W. Takahashi, Y. Takeuchi, R. Kubota, Strong convergence theorem by hybrid methods for families of nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl. 341 (2008) 276-286.
[19] K. Aoyama, F. Kohsaka, W. Takahashi, Shrinking projection methods for family of nonexpansive mappings, Nonlinear Analysis, 71 (2009) 1626-1632.
[20] A. Meir, E. Keeler, A theorem on contraction mapping, J. Math. Anal. Appl. 28 (1969) 326-329.
[21] Y. Kimura, K. Nakajo, Viscosity approximations by shrinking projection method in Hilbert spaces, Comput. Math. Appl. 63 (2012) 1400-1408.
[22] M. Tsukada, Convergence of best approximations in a smooth Banach space, J. Approx. Theory, 40 (1984) 301-309
TÓM TǺT
Phương pháp chiếu co rút và cải biên phương pháp tách lai ghép Douglas-Rachford cho toán từ dơn điêu trong khóng gian Hilbert

Trong bài báo nảy, dể tìm khơng diểm cho một toôn tử đơn điệu trong khong gian Hilbert, chüng tôi giơi thiẹu phương pháp chiếu co rắ và phương pháp tách lai ghép Douglas-Rachford. Các phương phạ́p này được dựa trèn phương pháp chıếu co rát của Takahashí cho ánh xạ̣ khong giãn, phương pháp lai ghép và phuơng pháp tách Douglas-Rachford.

Nglyền-Bừ̀ng
Viện Công nghệ Thơng tin - Viện Hàn lâm Khoa học, Việt Nam.
Lâm Thùy Dương ${ }^{2}$, Nguyển Duy Phurong Trường Đại học Sư phạm, Đại học Thái Nguyên, Viắ: Nam.

Từ khớa: ánh xạ không giãn; diếm bât động; phương phâp chiéu co rút; phương pháp tách lai ghép; ánh xa don dieu.
Ngày nhận bài:21/8/2016; Ngày phản biện:12/9/2016; Ngày duyê̂t ääng: 31/5/2017

[^1]
[^0]: ${ }^{1} \mathrm{Tel} \cdot 0915459454$, Email lamthuyduongspenggmail.com

[^1]: ${ }^{2}$ Tel: 0915450454, Email. lamthuyduongsptnagmail.com
 220

