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1 Introduction and preliminaries

Let H be a real Hilbert space with inner product ¢-, ) and norm ||-||. Let 7" be a maximal
monotone nonlinear mapping in H, that is, T is monotone, i.e., T satisfies the condition:
(u—v,z~y) > 0 for u € T(x), v € T(y) with z,y in the domain of T, and, in addition,
the graph of 7" is not included in the graph of any other monotone mapping.

The problem, studied in this paper, is to find a zero for the monotone inclusion
0eT{(z) T=A+8, (1.1)

where 4 and B are maximal monotone in H.

A fundamental algorithm for finding a root of & maximal monotene mapping 7 is the
proximal point algorithm: zy € H and

Zpsr = Jomp, k=01, (1.2)

where JT = (1 + 7T)~! and {rg} C (0,0c) and I denotcs the identity mapping in H
This algorithm was firstly introduced by Martinet [1). In [2], Rockafellar proved that if
liminfyoeorx > 0 and 7710 # #, then the sequence {z;}, defined by (1.2), converges
weakly to a solution of (1.1). In {3], Guler showed that it converges only weakly in infinite
dimenticnal space H. Note that, in many cases, for a fixed v > 0, I +77 is hard to invert,
but 7 +yA and I + B are easier to invert than I + ~T, where T = A+ B and A, B are
two maximal monotone mappings. Splitting methods for problem (1.1) are algorithms that
do not attempt to cvaluate the resolvant (I + +T)~}, but instead perform a sequence of
calculations involving only the resclvants (I +vA)™" and (I | vB)™". Such an approach is
inspired by well-gstablished techniques from numerical linear algebra (see, [4]). Monctone
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operator splitting algorithms have extensive literature, all of which can essentially be dev-
ided {nto four principal classes: forward-backward class (see, [5]-[8]) double-backward (see,
7] and {9]), Peaceman-Rachford (see, [10]), and Douglas-Rachford {sec [10]-[13]). To the
best of our knowledge, all of Douglas-Rachford splitting methods only produce weakly con-
vergent iterative sequences, Moreover, the weak cluster points of these weakly convergent
iterative sequences only solve some fixed points equation, but not the original monotone
inclusion problem. For example, see (8],

Theorem 1.1. If A,B are mazimal monotone mappings in a Hulbert space H and
the solution set of 0 € Az + Bz is nonemply. Let Ax be o sequence in (0,2] such that
Pren M2 = Ap) =00, let y € Ryy, and let xo € H. Set

e = By,
2 = J7 @y — =) (1.3)
Ter1 = Tk + M2k — i)

Then, there exists z € Fix(R4 RE) © € Fix(R4RE) such that:

(4] JPz € Zer(A+ B);

(#) (zx) converges weakly to x;

(w3} (yx) converges weakly to J_?z',‘

(w) (21) converges weakly to sz,

where RD = 27D — T for mapping D in H.

Recently, Zhang and Cheng proved {14] that Jf.rk converges weakly to a zero of A + B,

assumed to be maximal monotone With the additional assumption, they also obtained
strong convergent result, by combining the method with Haugazeau's method [15].

Clearly, method (1.3) can be rewritten in the form
Tep1 = S(1/2)z
where
S(e) = oT + (1 - o), T = (R} RE),
with nonexpansive mappings T, since R and RZ are nonexpansive (see [9]). We also know
in (8] that JfFix(T) = Zer(A + B). Tt is well-known know that a sequence {z}, generated

by Krasnoselski-Mann method:
Trsr = (1 — o)z + 0Tk,
only converges weakly to an element of Fix(7"}, assumed to be noncmpty, if oy, € [0,1] such
that
> ol - o) = +oo.

keN

In order to obtain convergent result, using Solodov and Svaiter's epproach [16], Nakajo
and Takahashi, in [17], introduced the following algorithm:
z1 € C, any element
ye = ot + (1 — o) T2,
Cr={2€C:|lz—wil < llz—~al}, (1.4
Qr={z€C:{zx -z —2x) > 0},
2116 Ter1 = Pono (1), =12,
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gwhere {z} © [0,1] satisfies limsupy_,0o &k < 1. Developing the idea, in [18], in order
to find a.ﬁxed point of a nonexpansive mapping T on a closed convex subset € in H,
'g Takahashi introduced an alternative projection method:
zp=1x € C:=Cq,
Y = opxg + (1 — ) Tmp, (ws)
Cryr ={2€ Cu: i — 2l < ll= — 2II}, ’
ore1 = Po,,(2), k=1,2,---,
which is called the shrinking projection method. They proved the strong convergence of
this sequence to Ppﬁﬂn)z, if a € [0,6) for all £ > 0 and a € (0, 1). See, also [19].
In this paper, motivated by tho rosults (1.3) - (1.5), without assuming A+ B to be max-
imal monotone, we introduce two new iteration methods. The first method is constructed

as follows: .
xg € Hy = H, any element.

w = JBxy,

2k = T2y, — 2x),

Ve = Tk + ek (2 — be),
Hypr = {2 € Hy: log —2I° < |lpe - 20°},
Titr = Py, flor), k20,

(16)

where f is a Meir-Keeler contraction (see, (20]) in # and sequence {e} satisfies the con-
ditions 0 < ¢ < ¢4 < 2. As in [21], the second method is discribed in the form:

xg € H, any element,

w = FPxy,
2 = JP (20 — =),
vk = Tk + ex{25 — W), n
Hy={z € Hy: ljue — 2l < llzx — 2ll}-
W { A, if k=0
T {z € Wit (f(mem1) —mrome—2) 20}, if k21

T4t = Prpow, f(zn), k20

Recall that mapping f in a metric space X with distance d(x, v} is said to be a Meir-Keeler
contraction, if for every € > O there exists a number § > 0 such that for each z.y € X,
< d(z,y) < ¢+ & implies that d(f(z), f(¥)) <«

We will make use the following well-known results.

Lemma 1.1. (see [8]). Let C be o nan-empty, closed and convez subset m H. Then, we
have:
z=FPole) @ (z~2,u-2)>0 VueCVe€H

where Po(x) denotes the metric projection of x onto C.
Proposition 1.1. (see, (8], Corollary 25.5). Let m be an inieger such that m 2 2,
set 1 = {1,2,--- .m}, and let (A)er be I 2 Dp from o Hilbert
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space H to 27, For every i € I, let (%o, uik)en1 be o sequence in the Gph A, and let
(#,,u;) € H x H. Suppose that * '

« u
Sup o0, and zp o v Dy mauig - S 2,02 0.
i€l €l

Then, there erits = € zer 3. A, such that the following hold:
iel

(@) s=m = =am;
@ Tu=0
iel

(48) Viel, (x:,u,) € Cphdy '
2 Main Results
We prove the following results.
Theorem 2.1. If A, B are ! ppings tn Hilbert H such that the
solution set of 0 € Az + Bz is nonempty, then the sequence {zi}, defined by (1.6) with 0 <
€< € < 2 converges strongly to some u, such that J.?zk converges to J,,Bu, € Zer(A+B).

Proof. i) We prove that zy. s defined for afl k > 0.

Clearly, Hy is a closed and convex subset in H for all k > 0. We prove that Hy # 6. As
mentioned above, .Lf Fix{T) = Zer(A + B) #.0, and hence Fix(T) # 0. On the other
hand, I

vy = (1 — ¢/2)zg + Ty /2. (2.1)

Therefore, for any p € Fix{T'), we have
floe = pll £ (1 = &/}l — 2l + exllTae — Tpll/2 < llzx -~ pll.
which implies that Hy # @. It means that z, is well defined for each & > 0.

ii) We show that there exists an element § € H such that z, — J a5 k — co.

Consider the mapping U, = Fn,,Hif. Since Pc is nenexpansive for any closed and
convex subset C and f is a Meir-Keeler contraction, the mapping U, is also a Meir-Keeler
contraction. Therefore, there exists an element 5 € N,»oH; with 7 = U,p. Put 3 =
Py, f(P). Then; Zx — P as k — o0, (see {22]). This fact and the convergence of {zx} to 7
were proved also in [21). '
iiliy We prove that § € Fix(T).

First, note that zx+1 € Hiqa. By definition, Jlve — 241l £ ||#x — Tieqa || — 0. Conse-
quently, [lvx — zxl| < 2@k — ze41ll = 0. Now, from (2.1) it follows that ||z — Taxf| <
2(|vx — || /¢ = 0. Therefore, 7 € Fix(T).

iv) yx — JEP that 15 @ solution of 0 € Az + By.
From (1.8), we have that ||z — gxll = [|ve — zxll/ex < |lvx — zx[l/€ = 0. On other hand,
(e, m — 1)} C GA(¥B), (3, us) BUTE B~ I7B) e = 24—,

{{2, 20 —%k—22)} C Coh(7A), (21, 05) S(JEB, —5+J75§),w;‘ = 29— Tk — 2k, |[ U +wi || — 0.
218
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By Proposition 1.1, JBB € Zer(A+ B). This completes the proof.

Theorem 2.2, Let A,B and (&} be as in Theorem 2.1. Then, we Kave the same
conclusion for {z}, defined by (1.7).

Proof.  Clearly, Hy and W, are closed convex subsets of H and Fix(T) € Hy for all
k = 0. We prove that Fix(T) C W; for every ¥ € N and a sequence {x;} is well
defined. We have Wy = H, so Fix(T) ¢ Wp. We shall prove this fact by mathe-
matical induction. Suppose that Fiz{T} C H, N W, for some n € N. We prove that
Fix(T) C Hny1 N Wiy, Since Fix(T) C H, N W, there exists a unique element 'z +1 =
Py.nw, f(zg), and hence, {(f(zc) — Tpi1, Tes1 —p) = 0 for all p € H, AW, which im-
plies that {f(zx) ~ Tr41, 2441 ~p) = 0 for all p € Fix(T). Thus, Fix(T) C Way1. Since
Pn,,,Wif is a Meir-Keeler contraction in H, there exists an element 7 ‘e H such that
7€ NipoH; with § = Pn Wi/ (B). Put % = Py, f(F). Then % ~+ 5 as k — oo. The left
arguments as in the proof of Theorem 2.1. This completes the proof.
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TOM TAT

Phirong phap chiéu co rat va cai bién phwong phép tich lai ghép Douglas-Rachford cho

tedn tir don dieu trong khong gian Hilbert

Trong bai bdo nay, 48 fim khong diém cho mét todn tir don diéu trong khong gian Hifbert,
chiing t6i giéi thiéu phirong phdp chi€u co riit va phuong phép tich lai ghép Douglas-Rachford.
Cic phuong phap nay dugc dya rén phuong php chi€u co riit clia Takahashi cho 4nh xa khéng
gidn, phuong phdp lai ghép vA phuong phip tich Dougtas-Rachford.
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