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1 Introduction (Pj) Find X e D such that x e S{x) and 

Throuthout this paper, X is denoted a real 
Hausdorff locally convex topological vec­
tor space; y be a real topological vector 
space and let C C y be a cone. We put 
1{C) = Cn{-C). If 1{C) = {0} , C is said to 
be pointed. Let Y* be the topological duai 
space of Y. We denote by {^, y) the duality 
pair between ^eY' and y eY. The topo­
logical dual cone C and strict topological 
dual cone C + of C are defined as 

C: --{^eY' : {e,c) > 0 for all c e C}, 

C'+ : - {̂  e Y' {e, c) > 0 for aU c € 
C\liC)}. 

In this paper, "we assume that C be a 
pointed cone with C"+ 7̂  0. Let DQX.he 
nonempty subset. Given multivalued map­
pings S : D -^ 2^ with nonempty values 
and F : D X D -> 2^ with nonempty com­
pact values. For any ^ € C'+, we consider 
the following generalized quasivariational 
inequality problems: 

max {£, z) < max ( ,̂ 2) 

for all a: € S{x). 

In the cases F is a real function on D x £) 
and C = K+ then problem (P^) becomes 
to find X € D such that x € S{x) and 
F{x, S) < F{x, x) for all a; e S{x). 

This is scalar quasivariational inequality 
problem studied in [3]. We know that 
scalar quasivariational inequality problem 
as generalizations of variational inequalities 
and optimization problems, including also 
many other related optimization problems 
such as fixed point problems, complemen­
tarity problems, Nash equilibria problems, 
minimax problems, etc. The purpose of this 
article is to establish sufficient conditions 
for the existence of solutions to problems 

Given a subset D C X, we consider a mul­
tivalued mapping F : £> -> 2^. The defini­
tion domain and the graph of F are denoted 
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dom F := {x G D-. F{x) ^ $} , 

gphF := {(x,y) eDxY-.ye F{x)} , 

respectively. We recall that F is said to 
be a closed (respectively, open) mapping if 
gph F IS a closed (respectively, open) sub­
set in the product space X xY. A multi­
valued mapping F : D —> 2^ is said to be 
upper (lower) semicontinuous in x e D if 
for each open set V containing F(x) (re­
spectively, F{x) n K 7̂  0) there exists an 
open set U o! x such that F(x) C V (re­
spectively, F{x) n K 7̂  0) for all z € U. 

Definition 1,1. Let y be a linear space 
and C a nontrivial convex cone in Y. A 
nonempty convex subset S of C is called a 
base for C if each nonzero element x 6 C 
has a unique representation of the form 
X = Xb with A > 0 and 6 G B. 

Proposition 1.2 (See [2]). Let Y be a 
Hausdorff locally convex space and C is a 
nontrivial cone in Y. Then C has a base B 
with O^clB if and only if C'+ yt ii\. 

Remark 1.3. If y is locally convex Haus­
dorff space, C has a convex weakly* com­
pact base, then C"+ ^ 0. 

If F is upper C-continuous, lower C-
continuous in any point of domF, wc say 
that it is upper C-continuous, lower C-
continuous on Z?. 

Definition 1.5. Let F : D x D -^ 2^ be a 
multivalued mapping. We say that; 

(i) F is diagonally upper (lower) C-convex 
in the first variable if for any finite set 

{Xi. ...,Xn} C D,X = X̂  QjXj,Qj' > 0,{j -
j = i 

1, 2,..., Tl), ^ Qj — 1, one have 

'^OijF{xj,x) CF(x,x) + C, 
i=i 

(respectively, F(x.x) C y^ajF{xj,x)—C). 
j = i 

(ii) F is diagonally upper (lower) C-
quasiconvex-like in the first variable if 
for any finite set {xi,...,Xn} C D,x 

Y.ajXy.otj > 0(j = l,2,...,n), X ; Q J - 1 . 
j = i j= i 
there exists an index i e {1, ...,n} such that 

P ( x „ x ) C F ( x , x ) - K a 

( respectively, F(x,x) C F(xi,x) - C). 

The following definitions will be used in the 
sequel. 

Definition 1.4. Let F : D -> 2^ be a 
multivalued mapping. We say that F is a 
upper (lower) C-continuous in x e dom F 
if for any neighborhood V of the origin in 
y there is a neighborhood t/ of x such that: 

F{x) C F(x) -h K -f- C 

[F{x) C F(x) -\-V -C, respectively) 

holds for all X 6 C/ n dom F. 

To prove the main results, we need the fol­
lowing theorem, 

Theorem 1.6. (Fan- Browder, see [1]) Lei 
D be a nonempty convex compact subset of 
a topological vector space, F : D —> 2^ 6e 
a multivalued map. Suppose that 

(i) F(x) ts a nonempty convex subset of D 
for each x € D; 

(ii) F~^(x) IS open in D for each x e D. 
Then there exists x G D such that x 6 
F{x). 

202 
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2 Existence of solutions for 
generalized quasivaria­
tional inequality prob­
lems 

In this section we wish to establish an ex­
istence criterion for solutions of general­
ized quasivai-iational inequality problems. 
Let M : D -^ 2^ be a multivalued map­
ping. First of all, wc prove the following 
proposition. 

Proposition 2.1. Suppose that D is a 
nonempty convex compact subset and the 
multivalued mappings S and M satisfy the 
following conditions: 

(i) 5 has nonempty values, 5~^(x) is open 
for all X e D and the set IT :~ {x e D : 
X € S{x)} is nonempty closed; 

(ii) for each teD, the set 

Bt-.= {xeD-.te M(x)} 

is closed in D; 

(iii) for any finite subset {ti,t2,...,tn} in 
D and x e co{ti,t2, ---,*«}, there exists an 
index j e {1,2, ...,7t} such that tj € M{x). 
Then there exists x E D such that x e S{x) 
and 

X e M{x) for all x € S{x). 

Proof. We define the multivalued mapping 
G: D ^ 2^ by 

G(x) = {teD-.t^M{x)}. 

By (in) we have C~^(t) = D\Bt is open in 
D, for alH e D. We show that there exists 
x&W such that G{x) n S(x) - 0. On the 
contrary, suppose that G{x) D S{x) / 0 for 
all x €W. Now, we define the multivalued 
mapping H : D^2'^ hy 

r coG(x)nco5(x) , if xeW, 
^^' ~ \ coS(x). otherwise. 

Then H{x) arc nonempty convex for all 
X e D and 

H-\x') = [(coG')-i(x')n(co5)-^(x')lU 

[(co S)-\x') n D\W\ is open in ZJ. 

By Fan- Browder fixed point theorem, 
there exists x* e D such that x* G H{x*). 
Hence x* e S{x') and x* € coG(x*). This 
implies, there exists {(1,(2.--.^n} Q G(x*) 
such that x ' G co{ti,t2, ...,tn}. By defini­
tion of G, for each i e {1,2, ...,TI}, tj ^ 
Mix"). This contradicts with (iii). Hence 
there exists x € H^ such that G(x)nS{x) ^ 
0. This implies x € S{x) and 

X G M{x) for all X G 5(x). 

The proof is complete. D 

Now we arc able to establish sufficient con­
ditions for existence of solutions to (P^). 

Theorem 2.2. Suppose that D is a 
nonempty convex compact subset and F 
with nonempty compact values. Assu-me 
that there exists ^ G C""" such that the fol­
lowing conditions are fulfilled: 

(i) 5 has nonempty values, S~^{x) is open 
for all X € D and the set W := {x e D : 
X 6 S{x)} is nonempty closed; 

(ii) for each teD, the set 

ri:= {xeD: max { ,̂2) < max (£,2)1 
* ^ef(i.i)' ^eF(t,x) " 

is closed in D; 

(in) for any finite subset {ti,t2,...,tn} in 
D and x G co{(i,t2. •••,t„}, there exists an 
index j e {1,2^,,.,n] such that 

max lE.z) < max (£,2). 

Then (P^) has a solution. 
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Pmof. We define the multivalued mapping 
M : D -» 2° by 

Mix) = He D : max i(,z) 
•6F(. , i ) 

< max (f,^)}. 
z€F{t.i) 

For any fixed teD, the set 

B, = {xeD:te M{x)} 

— {x e D : max {f, z) 

< max {£,z)} 

= r| 
is closed set in D. Now, let {ti,t2,--.,tn} C 
D a n d x G co{ti,t2i "-.tn}- By (iv) we have 
there exists an index j e {l,2,...,n} such 
that 

max (E,z) < max {E,z). 
z^F{x,xy ' " z€F(tj.xy ' 

This implies tj G M(x). Therefore, all the 
conditions of Proposition 2.1 are satisfied. 
Applying Proposition 2.1, there exists x G 
D such that x G S{x) and 

X G M(x) for all x G 5(x). 

This implies x G 5(x) and 

max {f, 2) < max (£,2) for all x € S(x). 

The proof is complete. D 

Example 2.3. Consider problem (P^) 
where X = y ^ K,C = R_ := 
(-00,0],D [0,1],5(x) = [0,1] for all 
X G [0,1] and the multivalued mapping 
F ; Z? X Z) ^ 2** by 

F{x,t)--
[0,x], if x < i, 
[x, 1], otherwise. 

We easily check that C'+ ^ (-00,0). More­
over, for each £ G C'"*" and x,t € [0,1], we 

max {£,2) = max{£,z)=0, 

,^ . f 0, if x < t , 
max (f, z) = i . .. 

z&F(x,ty ' 1̂  ̂ X, lf X > t. 

Y\ : - { X G D : max (^,2) 
* ^6F(x,z)'^ 

< max (f, 2)} 
zeF(t,xy^' 

— [0, (] is closed in D. 

On the other hand, for any finite subset 

{t\,t2,.-;tn} in D and x= Y^ aiti^a.^ > 0 
i=l 

(i = l,2,...,ri), 2 "t = Ij there exists an 

index j € {1,2,..., n} such that x < f j . 
This implies 

max {E,z)= max {E,z) = Q. 

z^F[x,xy^' zeF(t„^y^ 
Then the assumptions in Theorem 2.2 are 
satisfied and x = 1 is a unique solution of 

Remark 2.4. For each ^ G C'+i the as­
sumption (ii) in Theorem 2.2 is satisfied 
provided that: for any t G D, F{t,.) is 
upper (—C)- continuous and the multival­
ued mapping C : D —̂  2^ defined by 
G{x) = F{x,x) is lower C- continuous. 

Proof. For e > 0 be arbitrary, since the 
continuity of f, there exists a neighborhood 
V of the origin in Y such that £(y) Q 
( - | , | ) . Let {xa} be a net from r | con­
verging to Xo. Then, we have 

max (f, z) < max (£, z) for all a. 
.€F(x.,^a)^ " ^eF(t,xc)^^' ' 

On the other hand, since F{t,.) : D ^ 2^ 
is upper {—Cy continuous and the multi­
valued mapping G : D -^ 2^ defined by 



-Iiingvdf)/^ Tap chi KHOA HOC & CONG NGHE 166(06) 201 - 206 

G{x) = F(x,x) is lower G- continuous, 
there exists an index ao such that 

Fit,x^) C F{t,XQ)-G-\-V, 

^(a^o.aro) Q F{Xa.,Xa) - C-{-V 
for all Q > Qfl. 

It follows that 

max (f, z) < max (^, z)-\- --, 

max (£.2) < max {E,z)-\---
zm^o,xoy >eF(x^.xS 2 

for all Q > ttQ. 

Hence 

max {f, z) < max (^, 2) -\- e. 
z€F{xo,xoy zeF(t.xo) 

Therefore, 

max (6,2) < max (^,2). 
zeF(xo,xoy zeF{t,xoy 

This shows xo G F^. Consequently, r | is 
closed. • 

Remark 2.5. For f G C"^, £/te condition 
(iii) of Theorem 2.2 is satisfied if one of the 
following conditions is satisfied: 

1. for each x E D, the set 

Slf:=itED: max {£,z) > max (^,2)} 
* zeF(x,xy z€F{t.x) 

IS convex. 

2. F(.,.) : D >: £) -> 2^ is diagonally lower 
C- convex in the first variable. 

3. F zs diagonally lower C- quasiconvex-like 
in the first variable. 

Proof. Let {ti,t2, -,tn} Q D and x G 
C0{ti,i2,-..,tn}-

1. Assume that for each 3 E {1,2,..., n} we 
have 

max (e .2)> max (e,2). 

This implies tj E fi^ for j — 1,2, ...,n. By 
n? is convex set, x G Si?. This contradicts. 
Hence there exists an index j G {1,2, ...,n} 
such that 

max ( f ,2)< max (£,2). 
z€F{x,xy^ ' ~ z€F(t„xy^ ' 

2. Since F(.,.) is diagonally lower C- con­
vex in the first variable, then 

F(x, x) C ^ aiF(ii, x) - C, 

where x — 52 '̂ t^ii *̂ i ^ 0 
1=1 

(t - 1,2, ...,n), 5!] tti - 1. This implies 
i=l 

max (^,2) < max {f. •s) 
zeF(x,̂ ) seE^»F(t„^) 

< > Q, max (£,2) 
- ^ %6F(ti.x)^^' 

< max max {£.2). 
~ l<^<^vzeF{t„x) 

Thus, there exists an index j E {1,2, ...,n} 
such that 

max ( £ , 2 ) < , m a x {£,2). 
^eF(:e,x)̂ ^ ' *eF((,.x)'^ 

3. If F is diagonally lower C- quasiconvex-
like in the first variable, there exists an in­
dex j G {l,2,. . . ,n}, 

F ( x , x ) C F ( ( j , x ) - C . 

This yields 

max {£,2) < max (£,2). 
zeF{_x.xy ' z^F(t„xy 

Since Theorem 2.2, Remark 2.4 and Re­
mark 2.5, we have following corollarys : 
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Coro l lary 2 .6 . Suppose that D is a 

nonempty convex compact subset and F 

with nonempty compact values. Assume 

that there exists £ G C'+ such that the fol­

lowing conditions are fulfilled: 

(i) S has nonempty values, S^^{x) is open 

for all X € D and the set W := {x E D : 

X E S{x)} is nonempty closed; 

(ii) for each t E D, the set 

Ti:={xED: m a x ( £ , 2 ) < m a x (£,2) 

is closed in D; 

(iii) for each x € D, the set 

CB :^ H E D : m a x {£,2) > max (£ .2)} 
^ ^ zeF{x,xy^' ' zeF(t,x)^ '^ 

is convex. 

Then (P^) has a solution. 

Coro l lary 2 . 7 . Suppose that D is a 

nonempty convex compact subset and the 

multivalued mappings S, F satisfy the fol­

lowing conditions: 

(i) 5 has nonempty values, S~^{x) is open 

for all x E D and the set W := {x E D : 

X E S{x)} is nonempty closed; 

(ii) F has nonempty compact values, for 

any x' G D, F ( x ' , . ) is upper ( - C ) - contin­

uous and the multivalued mapping G : D -^ 

2 ^ defined by G{x) — F{x,x) is lower C-

contmuous; 

(iii) F is diagonally lower C- convex in the 

first variable (or, F is diagonally lower C-

quasiconvex-like in the first variable). 

Then (P^) has a solution, for all £ G C''^. 

R e m a r k 2 . 8 . If y = R, C - E+ and 
F i D x D — ^ R i s a single map , then Corol­
lary 2.7 reduces to Corollary 2.4 in [3]. 
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Summary 

Slf ton tai nghiem cua bai toan b i t dang thiJc tiia bi^n phan suy rong 

Bui The Hiing* va Giap Van Sii 

Dai hoc Su Phg.m - DHTN 

TVong bai bao nay, chung toi chutig- minh mgt s6 k6t qua cho STf t5n tg,i nghifm cua bai to in bit 
dang thdc ti^a biln phan suy rgng. 
K e y words a n d p h r a s e s : C-loi tren va dudi cua anh XQ. da tr%, C-giong n/iK ttia ldi tren va dttdi 
cua dnh xa da tn, C- liin ty.c tren va diidi cua anh xa da tri. 
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