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1 Introduction

Throuthout this paper, X is denoted a real
Hausdorff locally convex topological vec-
tor space; Y be a real topological vector
space and let € € Y be a cone. We pul
{(C) = Cn{=C). TE}(C) = {0}, C is said to
be pointed. Let Y* be the topological dual
space of Y. We denote by (€, ) the duality
pair between £ € ¥* and y € Y. The topo-
logical dual cone C' and strict topological
dual cone 't of C are defined as

O ={EeY :{c)>0forall ceC},

Cr e Y
C\(C)}-

{€,cy > O forall c €

[n this paper, we assume that C be a
pointed cone with C*+ # ¢. Let D C X. be
nonempty subset. Given multivalued map-
pings & : D — 2P with nonempty velues
and F: D) x D — 2% with nonempty com-
pact values. For any £ € C', we consider
the following generalized quasivariational
inequality problems:

(#) Find % € D such that Z € 5(2) and

max < max £,z
zeF(i,i)(é"ﬂ = zemz,i)‘e )

for all z € S(Z).

In the cases F is a real function on D » D
and C = R, then problem (P:) becomes
to find Z € D such that = € S(Z) and
F(2,%) < F(z.3) for all z € S().

This is scalar quasivariational inequality
problem studied in [3]. We know that
scalar quasivariational inequality problem
as generalizations of variational inequalities
and optimization problems, including also
many other related optimization problems
such as fixed point problems, complemen-
tarity problems, Nash equilibria problems,
minimax problems, etc. The purpose of this
article is to establish sufficient conditions
for the existence of sclutions to problems
(Pe)-

Given a subsct D C X, we consider a mul-
tivalued mepping F': D — 2Y, The defini-
tion domain and the graph of F are denoted
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by
dom F :={z € D : F(z) # 0},

gph F:= {(z,y) € Dx Y : y € F(z}},

respectively. We recall that F is said to
be a closed (respectively, open) mapping if
gph F 15 a closed (respectively, open) sub-
set in the product space X x Y. A multi-
valued mapping F : D — 2V is said to be
upper (lower) semicontinuous in z € D if
for each open set V coutaining F(Z) (re-
spectively, F(Z) NV # @} there exists an
open set U of Z such that F(z) C V (re-
spectively, F(z) NV # @) for all z € U.

Definition 1.1. Let ¥ be & linear space
and C a nontrivial convex cone in V. A
nonempty convex subset B of C' is called a
base for C if each nonzero element z € C
has a unique representation of the form
r=AbwithA>0and b€ B.

Proposition 1.2 (See [2]). Let Y be @
Housdorff locally convex space and € 43 a
nontrivial cone m Y. Then C has ¢ base B
with 0 € ¢l B of and only if C' #£ 0.

Remark 1.3. If Y is locally convex Haus-
dorff space, C has a convex weakly* com-
pact base, then C't # §.

The following definitions will be used in the
sequel.

Definition 1.4. Let F : D — 2 be 2
multivalued mapping. We say that F is a
upper (lower) C-continuous in # € dom F
if for any neighborhood V of the origin in
Y there is s neighborhood U of T such that:

F)CF@)+V+C

(F(z) C Fz) + V — C, respectively)
holds for all z € U Ndom F.
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If F is upper C-continuous, lower -
continnous in any point of domF, we say
that it is upper C-continuous, lower C-
continuaus on D).

Definition 1.5. Let F: Dx D —2Y bea
multivalued mapping. We say that:
(i) F is diagonally upper (lower) C-convex
in the first variable if for any finite set
n
{21, 22} E Dz = 3 052,05 20,(F =
=1

n
1,2,..,m), 3 a; = 1, one have
j=1
n
3" ayFla;. ) C Flz,2) + ¢,
i=1

(respectively, F(z.z) € ZajF(z,-,z)—C).
3=1

(ii) F is diagonally upper (lower) C-
quasiconvex-like in the firs§ variable if
for any finite set {xy,..,2a} € D,z

n n

Y ez, 05 = 07 = 1,2,..,0), z:laj =1,
=1 1=

there exists an index ¢ € {1,...,n} such that
F(z.,z) C F(z,z)+ C.

( respectively, F(z,z) C F(z;,z) - C).

To prove the main results, we need the fol-
lowing theorem.

Theorem 1.6. (Fan- Browder, see [1]) Let
D be o nonempty convexr compact subsel of
a topological vector space, F : D — 27 be
o multwalued map. Suppose that

(i) F(x) 15 a nonempty convex subset of D
for each z € D;

(i) F~1(x) s open in D for each x € D.
Then there ensts ¥ € D such that ¥ €
F(z).
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2 Existence of solutions for
generalized
tional
lems

quqsivaria—
inequality prob-

In this section we wish to establish an ex-
istence critevion for solutions of general-
ized quasivariational inequality problemns.
Let M : D — 2P be a multivalued map-
ping. First of all, we prove the following
proposition.

Proposition 2.1. Suppose thai D 1s o
nonempty conver compact subset and the
mullivalued mappings S and M sabsfy the
Jollounng conditions:

(x) 28 open
={reD:

(i} S has nonempty values, §~
for all x € D and the set 1’
z € 8{x)} s nonempty closed;

(ii) for each t € D, the set
Bi:={zeD:te M)}

is closed in D;

(i) for amy finite subset {t1,ls,...,ta} in

D end z € co{ty, ta, ..., tn}, there extsts an

indez § € {1,2,...,n} such thatt, € M{z).

Then there exists T € D such that & € S(%)
and

z € M(z) for oll x € 8(Z).

Proof. We define the multivalued mapping
G:D—2P vy
G(z)={te D:tg M)}
By (iii) we have G~(t) = D\ B is open n
D, for all ¢ € D. We show that there exists
I € W such that G(Z) N S(Z) — 6. On the
contrary, suppose that Q) N S(x) # @ for
all 7 € W. Now, we define the multivalued
mapping H : D — 2° by
coG(z)NeoS(z), if =& W,
Hiz) = coS(x). otherwise.

Ther. H{z) arc noncmpty convex for all
z€ D and
H'a) =

(0 &) ") N (0 8) 7 (")u

l(coS)

By Fan- Browder fixed point theorcm,
there exists z* € D such that «* € H(z*).
Henee z* € S(z*) and #* € co (3{z*). This
implies, there exists {t1,12,...,ta} C G(2*)
such that z* € co{t1.t2, ..., ¢, }. By defini-
tion of G, for each i € {1,2,...,n}, &, &
M(z). This contradicts with (iti). Hence
there exists T € W such that C‘(f)ﬂS(i) =
#. This imples Z € S(Z) and

“1{z') N D\W) is open in D.

z € M(Z) for all z € S(z).

The proof is complste. [m]

Now we arc able to cstablish sufficient con-
ditions for existence of solutions to (Pg).

Theorem 2.2. Suppose that D 45 q
nonempty conver compact subset and F
with nonempty compect values. Assume
that there ezsts € € C'F such that the fol-
lounng conditions are fulfdlled:

(i) S has nonempty values, S™'(z) 15 open
for all x € D and the set W .= {z € D :
z € S(x)} is nonempty closed;

(ii) for each t € D, the set

max ({,z) < max (E 2}

={zeD:
Z€EF(z,: z€P(ta)

s closed mn D;

(ili) for any finite subset {t1,19, ...,t,.) in
D ond x € co{ty,te, ..., L}, there ensts an
indez j € {1,2,...,n} such thet

(6.2

< max
e 62 £ mex

Then (Pg) has a solution.
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Proof. We define the multivalued mapping
M:D—2P by

M(z):{teD: ma.x (E, z)
sﬁn}?ﬁt’)(w))-

For any fixed ¢ € D, the set

B, = {zeD:itecM(z)}

— {z€eD: max (5, Y

2€F (2

(& ))

2€F(t 2)
_ 1t
= I‘E

is closed set in D. Now, let {¢1,22,...,
D and z € cofty, ta, ...,

t} €
tn}. By (iv) we have

there exists an index 7 € {1,2,...,n} such
that
<
;erg?fz)@’Z} zeF(e,,m)(E’ 2.

This implies ¢, € M(x). Therefore, all the
conditions of Proposition 2.1 are satisfied.
Applying Proposition 2.1, there exists Z €
D such that ¥ € S(%) and

T € M(z) for all z € S(z).

This implies Z € §(Z) and

e 6 S me (€2 for allz € S(@).
‘The proof is complete. jm]

Example 2.3. Consider problem (F)
where X = Y = RC = R_ :=
(—o00,0}, [0,1],8(z) = [0,1] for all
z € [0,1] and the multivalued mapping
F:DxD—2Rby

[0,2], if w<t,
[z, 1], otherwise.

F(z,2) = {

‘We eaaily check that C'* = (—o0,0}. More-
over, for each £ € &'F and z,t € (0,1], we
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have

e z)(E,z) ztg[g);](f, z) =10,

, if z <,

zer?‘é(!i(,t)(g' 2 = { fx, if x>t
Then

t .
Te = {weD: zEX%(Jz)<§ &
< zgv?:()(E,Z)}

= [0,# is closed in D.
On the other hand, for any finite subset
{t1.t2, ., tn} in D and = E a5t 0, > 0
(i=1,2,.

index j € {1,2,.
This implies

ax (€,2) =

zEF(z )

T, E a; = 1, there exists an

,n} such that z < ¢; .

vz} =0.

I il

Then the assumptions in Theorem 2,2 are
satisfied and & = 1 is a unique solution of
(Fe).

Remark 2.4. For each £ € C'F, the as-
sumption (ii) in Theorem 2.2 is satisfied
provided that: for any ¢ € D, F(¢,.) is
upper {—C)- continuous and the multival-
ued mapping G : D — 2V defined by
G(z) = F(z,z) is lower C- continuous.

Proof. For ¢ > 0 be arbitrary, since the
continuity of £, there exists a neighborhood
V' of the origin in Y such that £(V) C
—%.§). Let {z,} be a net from T} con-
verging to zg. Then, we have

< 1 a.
L (€A mer (62 foralla
On the other hand, since F(t,.) : D — 2"
is upper (—C)- centinuous and the multi-
valued mapping G : D — 2¥ defined by
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G(g) = F(z,z) is lower C- continuous,  This implies ¢; € QF for j = 1,2,...,n. By

there exists an index ag such that
Fltza) €
Flzg,2) €

for all a > agp.

F(t,z)—C+V,
F(%a,za) —C+V

It follows that

&2) <

zEF(t Za)

(612)+£,

mex
zEF(tz0)

:Efr{(l::fxn)(&Z) R o \<£’Z) + 2

for all & > agp.

Hence
<ePlaes :o)(& o< 2eF(bm) ot
Therefore,
» < il
zel‘l“rl]f:fza)<é 2= zeF(tzo)<E 2.

This shows zp € I‘é, Consequently, I‘é is
closed. [m]

Remark 2.5. For £ € C'*, the condition
{iii) of Theorem 2.2 is satusfied if one of the
following conditions ws satisfied:

1. jor each x € D, the set

Fom{teD: max (62)> max (6}

zEF(x,z)
1§ CONvET.

2. F(,.): Dx D — 27 is diagonally lower
C- convez in the first variable.

3. P is diagonally lower C- quasiconvez-like
in the first variable.

Proof. Let {t1,t2,..wtn} € D and z €
cofts, ta, .o in}

1. Assume that for each j € {1,2, ...,
have

n} we

(& 2)-

zéF(Lj z)

o (&2 z) >

stl

Qg is convex set, x € ﬂg This contradicts.
Hence there exists an index j € {1,2,...,n}
such that

max ,2) < V20,
EEEA S s

2. Since F(.,.) is diagonally lower C- con-
vex in the first variable, then

Flz,z) € i aF(t,z2)-C,

i=1

n
where £ — 3 a4t 0 2 0

=1

n
(=1,2,..,n), ¥ or = 1. This implies
=1
<
e (62) 5 max (£, 2)

363 aF(t,z)
g}

n
< o )

< ; X (62)
< JZh
$ jgex gmex (6.2}

Thus, there exists an index 7 € {1,2,..,n}
such that

ax ({£,z).

zeF(z )}

ax (£,2) <

zEF(:c,z)

3. If F is diagonally lower G- quasiconvex-
like in the first variable, there exists an in-

Flz,z) C F(t;, %) —
This yields
ax (€, 7).

zeF(t \z)

ax (£,2) <

z€ F(:,z)

o

Since Theorem 2.2, Remark 2.4 and Re-
mark 2.5, we have following corcllarys :
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Corollary 2.6. Suppose that D 115 2
nonemply conver compact subset and F
with nonemply compact volues. Assume
that there exists £ € C'F such that the fol-
lownng conditions are fulfilled:

(i) § has nonempty values, S~'(x) is open
forallz € D and the set W .= {x € D :
z € S(x)} s nonempty closed;

(i) for each t € D, the set

= <
Tti={zeD: I (&2 < . (& 2)
s closed in D;
(iii) for each z € D, the set

QF:={teD: L ({, z) > max (£.2)}

m
zeF(t,x)

18 conver.
Then (P;) has o selution.

Corollary 2.7. Suppose that D is a
nonempty convex compact subset and the
multwalued mappings S, F satisfy the fol-
lownng conditions:

(i) S has nonempty values, S~ (x) s open
for all z € D and the set W := {z € D :
z € S(x)} is nonemply closed;

(i) F has nonempty compact values, for
any ' € D, F(z',.) is upper {(—C)- contin-

Summary

nous and the multialued mapping G : D =
2Y defined by G(z) = F(z,z) is lower C-
contenuous;

(ili) F is dragonally lower C- convex in the
first voriable (or, F is diagonally lower C-
quasiconvex-hike in the first varioble).
Then (F) has o solution, for all £ € C'*.

Remark 28. f Y = R,C = Ry and
F:DxD - Ris a single map, then Corol-
lary 2.7 reduces to Corollary 2.4 in (3].
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