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ABSTRACT
Detecting ity structure 1s highly desirable wn many appl domains, such
as finding proteins with simlar functionality in a biol gical pathway or Iy group

relevant people in a social network However, ths s still a daunting task due to the network sizes,
as well as the complicated relations between entities. This paper provides a study on algonthms to
find communities m a network using edge betweenness centrality We have implemented the
modulanity i order ta compute the suitable network structure on weighted undirecied networks
We also discuss the pros and cons of existing techmiques 1n dstecting community structures To
Tughhght the benefits of the selected techmques, we demonstrate therr applications on various
datasets, including Victor Huga's Les Misérables, the movies’s network of actors, the author’s

collaboration network in visualization publications, and the protein nteraction network
i

Keywords: al; huns, de
eentrality

INTRODUCTION

Network is an important representation in
data visualization and visual analyties A
network consists of veruces and edges
representing  indrvidual entities  and
relationships ~ between  them.  Dense
connections  between related nodes form
cligues/communities ~ However,  wvisually
d such ities is it
even with a small network. Many solutions
[4], [14], [15] have been proposed to
automatically detect commumty structure 1n
networks. One effective technique is based on
edge betweenness centrality [[4], the sum of
the fraction of all-pairs’ shortest paths that
pass through a given edge. However, this is
sill an on-gomg challenge due to the
increasing amount of data, especially the
complicated relationshups between entities
One instance of such real-world data 1s the
biclogical network of protein interactions
which may contain millions of proteins and
billions of connections between them [6).
Additionally, edges may have different
weghts to ndicate the levels of correlations
between related entities- (and usually shown
by the thicknesses of edges in the graph).
These are weighted networks.
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The research presented n this paper focuses
on some available techniques on edge
betweenness centrality algorithm, focusing on
the undirected weighted network The main
contnbutions of this paper include

- We integrate virtual modes method mto
Newman edge betweenness algonthm [14].
‘We then apply a sampling technique [12] on
edge  betweennness  centrality  which
significantly reduces the computing time.

‘We demonstrate the usefulness of our
revised technique on various real-world data.
The data and ity detection techni
(implemented in forms of javascripts library)
are freely provided to research community.

We conduct a quantitative study on
networks with different features The tesults
from this study can serve as a guideline for
selecting the cc ity detection i
for a given network,

The overview structure of this paper is as
follows. In Section 2, we descnbe related
work Section 3 and 4 give a brief summary
of algorithms for detecting community
structures based on edge betweenness
centrality Next, we compare the performance
of these techniques on real-world datasets of
different sizes. Finally, we discuss the
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ir ion and
dlscussed technigues.

RELATED WORK

A varety of research aims at detecting the
netwotk structwres [19], [2], [18]. Some
popular techniques include Brandes’s [4]
using betweenness centrality and Newman’s
[14] using edge betweenness These
algorithms can implement on the network
using hierarchical clustering. Note that the
centrality betweenness can be used in edge
betweenness with an equivalent time of
Ogmn) and O(am + n’logm) on unweighted
and weighted networks, respectively, which
needs O(m + n) space where n is number of
vertices and m is number of edges. More
recently, Yang and Chen [21] introduced an
evolution of Brandes’ algorithm using virtual
rodes on 2 weighted network with less
running time than original ones, O(%Tn’ )
and O(n + (2% — 1)m) where W is the average
weight of edges and D is the average degree
of network (we usc these nota-tions for the
rest of the paper) We use one method based
on sampling techmques [17, 1, 20] to reduce
computational time. According to the edge
betweenness algorithm [14], the general form
of detecting communities structure 1s as
follows:

1 Calculate pair dependencies value fpr all edges.
2. Remove the most “betweenness”
commumities (the edge with the highest pair
dependencies value) from network

3 Update the network. and recalculate
betweenness for all remaining edges

4. Repeat from step 2 until no.edge remans.
As the results, all edges are presented on a
higrarchical  structure, known as the
dendrogram. Random Walks [15]. follows a
different approach for creating dendrogram
but it costs more spaces for calculation 0o@?)
Figure 1 demonstrates an example of
grouping ten vertices in a hetwork into three
different groups. In particular, Figure I(a)
shows the dendrogram sliced by a vertical
dotted slider. , Figure 1(b) shows three
dynamm cormunities corresponding to the
cun'ent cut-off value of the slider. The
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number of communities in networks reduces
as we move the slider to the left and vice
versa In other words, by using a slider o
control the cut-off level of the dendrogram,
We can merge communities into a la.rger
o ity or a larger

y
into smaller ones.

'l . -4

Figure L. Using a shder (lefi) to control
cammurfy formation (nght). The above graph s
generated using in D3,js
This raises another question. what is the cut-
off value which gives the best estimation for
community structure in a given network?

Girvan and N [14] use dulan
measure for this purpese Regarding runming
time of this algorithm, the worst-case scenario
1s O(m’n) or O(n®) on sparse graphs. In the
next publication, Newman [13] proposes an
adjusted  algorithm  which  promotes
O((m+n)n) in running-time or O(n?) on sparse
graphs. Figure 2 illustrates the community
configurations for uaweighted (left) and
weighted graph (right) at the maximum
modularity Q of each network.

L . " .

Figure 2. C structures of ighted
graph (left) and weighted graph (right): Thicker
links represent edges with more weights

METHOD

We implement algonthms in javascnpt and
D3js library [3] for discovering community
structures of weighted network.

Edge betweenness

An important partt of computing edge
betweenness centrality is how we score the
edge values (the pair dependencies values).
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We suggest to use Newman algonthm [14] with

- Breadth First Search (BFS) and virtual nodes

{thereafler, called VS) for weighted network.
There are two steps of scoring edge value:

1. Us¢ BFS to find the predecessors and
descendants of cach node.

2 Calculate pair dependencies value.

Virtual nodes

By adding additional nodes (VS) into the
original network, the algorithm tums the
weighted network into an unweighted
network, Am example of inserting V$ is
depicted in Figure 3, The strategy is to add nv
virteal nodes between i and j where n, = w,/%
-1 (rounded to the nearest integer).

Yo gede

w w
Figure 3 An example of VS" (a) Original network
with 10 nodes, (b) New network with two more
virtual nodes. In this example, W = 2 33 (or
28/12), therefore n, = I for the edge 6-9 and the
edge 3-9. Orange are actual nodes while gray are
virtual nodes

For finding shortest path betweenness, we
now use BFS on the modified network with

virtual nodes (VS): tf ni, j) > 1, we add new
VS nodes into the list of vertices. We start
BFS at s (an actual vertex) with distance ds =
0, weight w, = 1.
1. For each neighbor 7 of s, we assign d, =d. +
1, weight w, = w,. Add s mto Pathufi] and if 1
is real node, we add 7 into Parhdfs]. Pathu/s]
and Pathd/s] are the lists of predecessors and
descendants of s respectively.
2. For each neighbor j of 1, we consider two
main cases
a If (d, == null) (or ; has not yet visited by
any nodes) then d, =d, +1, w,=w, . Ifris a
real node, we add 7 into 'Pathu[)] and if j is
real, we add y into Paghdfi]. If 1 is 2 VS, we
add previous real node into Pathufi] and if y
1s real, we add y into Pathd of the previous
ral node
b. If (dj = di+1) (or has already visited), we
set w) = wj twi . If 1 1s real, we add 7 mto
Pathufj] Ifiisa VS, we add the previous real
node into Pathufj]. And if, j is real, we add
Pathd{j] wto Pathd of the previous real node
3 Repeat step 2 unnl all vertices have been
visited and scored
Figure 4 illustrates the algorithm using BFS
combined with VS (starting at vertex 5).

- Y

Figure 4. Example network (orarge and green are real vertices while gray 13 a VS vertex, green {leaf
nodes) have no shortest path from s going thraugh): (a} V'S 7 15 added inio the network (b) edge scores.
Notice that we do not calculate the accumulated scores for edges connecting the 1'S 7

Eliminate edge

We first insert the edge with highest score into drstance array and remove this edge from the
network, We then recalculate edge betweenness centrality. We rostart the algorithm in Section
3.2 until no edge remains. The distance array 1s used to build the dendrogram.

Compared to the original work of Newman [14, 21], we made some madifications in step 2 of the
algorithm in Section 3.2 Besides, an additional property of VS nodes defincs for fast query.
Pathu and Pathd are used for fast access of edge values. The running tme of this process 1s about
Ofm¢@Dn® +m)) for weighted network.
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Detecting network structure

Modularity is a mam factor for deciding
cluster formation. Along with building a
dendrogram by removing edge from distance
array, we recornpute the modulanty Q based
on the following equation.

Q= Zi(ew —al) (1)

where ¢ and ; are communities. €, 15 the
fraction of edges with one end vertices n
community 1 and the other m community j,
and a, is the fraction of ends of edges that are
attached to vertices 1n community
RANDOM SAMPLING METHOD

Yang and Chen [21] show that VS algorithm
does not outperform Brandes’ algonthm when
W > 2. In other words, VS algorithm is not a
preferable choice In addition, real world
networks, such as sacial networks, biolegical
networks, and communication networks are
so comphcated which makes exhaustively
edge betweenness centrality (for all pairs of
nodes) so exponentially expensive and
unpractical Th Matteo and Evgeni
[12] recently introduced a sampling algonthm
which estimates the betweenness centrality
based on vertex-diameter (and independent
from the network stze}. Given an undirected
unweighted network, the sample size is
calculated as follows:

£ =% (llogz (V D(GI-2)]+1+1n 3)

where the two parameters £.6 € (0.1), and ¢ is
an universal positive constant. VI(G) in thig
case can be described as 2-approximation
vertex-diameter:

1 Vertex v is selected at random

2 Calculate all shortest paths from vertex vto
all other vertices

3. 2-approximation vertex-diameter VD{G) is
the sum of the length of two shortest paths
with maximum size from v to two other
distinct vertices z and w

Random sampling 1s one of three technigues
studied in the next Section,

EVALUATION

In this section, we study the running time of
community detection algorithms on  four
weighted real-world networks of varous
sizes, namely: Victor Hugo’s Les Miscrables
dataset 110, 11], the movie’s network of
actors available on the IMDB website [9], the
author’s collaboration network mn
Visualization publications [8], and the protein
interaction network [5]. In the last three
datasets, we extracted the sub-networks (from
the original data) of 250, 500, 750, and 1,000
highest-degree vertices for testing purposes.
Table | displays prominent features of
networks in our study. The last two columns
are colored differently since these attnbuies
are specific for VS and sampling techniques

Table 1. Prominent features of datasets in our study

Dataset n m w D Q #VS #sample
Victor Hugo 7 254 321 6.6 051 170 215
IndexCards 250 579 107 46 083 295 265
500 1,108 101 44 081 562 113
750 1.433 104 38 091 816 315
1,000 1,761 164 3.3 0.92 1,074 315
VisPublication 250 663 188 53 085 457 265
500 1,436 173 57 072 838 265
750 2,178 159 58 0%0 1,226 263
1,000 2,894 153 57 093 1483 315
IMDB 250 721 262 57 055 371 215
500 1,126 249 45 069 638 263
750 1461 240 39 072 888 265
1,000 1,772 235 35 076 1,146 265
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Victor Hugo’s Les Misérabl tk 15
depicted in Figure 5. In particular, the top left
panel shows modutarity graph by the number
of clusters (which guides the selection of
mumber of clusters using a slider). Below it,
we show the network dendrogram. The
current selection (the black dotted line) of
cluster numbers is also reflected on the
dendrogram. By default. we set the number of
clusters at the maximum Modularity Q. In this
example, we have 7 commumnties (for 77
wertices) at the maximum Modularity Q =

+ As depicted in Figure 6 (a) at the network
size of 250, the sampling method (green) is
slower than other two algorithms. This rare
case occurs on smaller networks with higher
vertex-diameter. The number of iterations (or
sample size of the first row for the Indexcards
dataset in Table 1) to caleulate edge
betweenness centrality is greater than network
size (265>250).

For small and highly weighted networks, we
suggest using Brandes™ algorithm due to high

051. As the number of communities changes
(by setting the shider), the graph layout gets
vpdated dynamically to better reflect the
community structure changes

e e e o e
ooty .

Figure 5 Complete interface of our web
apphcation for the Victor Hugo dataset: number
cluster selected by a shder (lefi) and the
associated network visualization (right} where
nodes are colored by chister
Figure 6 1llustrates the results from our study
on tunning times of commumty detection
algorithms. All tests are performed on a 3.2
GHz Intel Core i5, macOS Sierra, 3GB RAM
1Mac PC running JavaScript and D3 s [3]. As
noticed, all networks in Table | are weighted.
However, random sampling technique only
warks on an unweighted network We convert
the weighted networks into unweighted

networks by adding VS.
Here are some observations fiam empirical analysis

Brandes and VS running times
exponentially increase with network sizes but
random sampling technique is almost linear

y and smaller comp | time But
for larger networks, VS with random
sampling technique reduces runming time
significantly

W Bandes M Yol ode B Randam Samping

Running ime (secones)
g & B B 8

8

= @ ™ -
Nurmber of vertoes
Figure 6. Clustering times of algorithms on
different network sizes. blue for Brandes®
algorithms, orange for V'S, green for random
sampling. The last graph has a different scales on

y-axis

CONCLUSIONS

In this paper, we have applied VS and random
samplng method for faster community
detection on weighted networks, The mnnmg
times of different algorithms are compared in
Section 5. As depicted in Figure 5, Brandes
algorithm [14] does not scale weil with the
network size. VS [21] is even worse 1n most
cases since 1t introduces many virtual nodes
into the existing network. However, VS helps
to convert weighted networks into
unweighted ones for which we can apply
random sampling [12] to reduce the munning
times. Notice that the random sampling
method is independent from network size but
depends on vertex-diameter of the given
network. Although our empirical study is
limited on a single machine (can not handle
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large networks), Figure 5 clearly depicts that
sampling technique combined with V§ scales
are better, compared the Brandes’ algorithm.

The source code of all studied algonthms,'
online demos, sample data, and more
examples are provided via our GitHub project
repository, located at hteps:
flgithub.com/\DataVisualizationLab/Network
Clustering.

One possible extension on visualization side
is oo multilayer clustering of Jarge networks
and supporting multi-stop navigation, In other
words, we want to provide a “google map”-
like tool for large networks The ability to
automatically  detect the  community
formation/change over time [16, 7] 15 also
another interesting future rescarch.
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TOM TAT
NGHIEN CU'U CAC THUAT TOAN BE XAC DINH
CAC CONG PONG TRONG MANG

Nguyén Thé V|nh‘ Trin Thanh Thwong, s
Triu Xuin Hoa?, Hoang Thi Hing Hanh'
Dgi hoc Thai Ngyén, Truimg Dar hoe NungLam DH Thei Nguyén

Viée phat hién cdu tric nhom trong cée lidn két mang déng val 13 gquan trong va dwge \mg dung
trong nhign Ynh e thue tién chang han nhw viée nhém va phan logi cic prolems cé chu tric,
cletc nang tuong tw vér nhau hojc nhiom nhimg ngud ¢ clng s& thich hodic mé: quan hé nio do
trén mang xa hé1 mat cach tr déng dé gitp cic nha phin tich, quan 1y dua 8 cdc phuong phap
chién luge, hozch dinh dm vén timg nhém Tuy nhién, viéc ir déng phét hién cdu tritc trén van cén
gﬁp nhiéu khé khan do cu tritc mang vé cling l6n cfing nhw méi quan hé phire tap gitta cic thue
thé véi ohau, Mét c4 nhan 6 thé tham gia nhiéu nhom cﬁng Iie trong mang Trong bai bdo nay,
thc gia nghién oirw mdt s§ thudt toan tyr dong phat hién ciu tric nhom trong mang dva trén phin
tich cc md1 quan hé gifta cic nit mang (hay con goi 14 edge betweenness ceatrality) Tiéu chf dé
so sinh céc thudt toin vén hhau dy trén gid tr modun (Modularity), gid tri néy ding dé dinh gié
chét hrong vigc t\x dong pha.n nhém Ngoii ta, ti¢ gi ciing dinh g1d vu didm, nhuge didm cia
timg Lhuat toan 361 véL mby mang c6 chu tric khac nhau v dua ra goLY dé Iy chon thudt toan phu
ho-p D& lam 16 tinh wu viét cia t\mg thujt toan, nhom téc gia tién hink chay timg thuat todn trén
céc t3p dit igu khic nhau, bao gbm dit héu Les Misérables ciia Victor Hugo, dir liu vé mang ludn
cic dién vién trong mét bd phim, dit hidu vé céc tic gia trong ciing mdt béi bao va dit hiégu vé mang
trong tac giita cdc pmlem

Tir khéa: thudt todn, xdc dink cong ddng, mang, cdu tric nhom, mdi quan hé giita cdc mit mang
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