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AN ALGORITHM TO ESTIMATE THE REGION OF ATTRACTION FOR
NONAUTONOMOUS DYNAMICAL SYSTEMS

ABSTRACT

Dinh Van Tiep", Pham Thi Thu Hang
University of Technology -TNU

This paper aims to present an algorithm to find a lower estimate for the region of attraction of a
nonautonomous system. This work is an extension for the result presented by Tiep D.V and Hue
T.T (2018), in which we mention to the problem for only the case of an autonomous system with
an exponentially stable equilibrium point. The approach implemented here is to use a linear
programming to construct a continuous, piecewise affine (or CPA for brevity) Lyapunov-like
function. From this, the estimate is going to be executed effectively.

Keywords: region of attraction, nonautonomous system, linear programming, Lyapunov theory,

CPA Lyapunov function.

INTRODUCTION

Constructing a CPA Lyapunov function for a
nonlinear dynamical system with the use of
linear programming were presented properly
in detail by S.F. Hafstein ([1], [3]). In the
construction such a function, regions U,D
(D cU) of the state-space containing the
origin (which is supposed to be the
equilibrium point) are used and U\D s
partitioned into n-simplices. Then, on this set
(called A) of such n-simplices, a linear
programming problem (abbreviated to LPP) is
constructed with the variables are assigned to
the values at vertices of A of a continuous
piecewise affine (abbreviated to CPA)
function which by fulfilling the constraints of
the LPP becomes a Lyapunov or Lyapunov-
like function of the system. Then, a search for
a feasible solution for the LPP on A is
executed. If this search succeeds then we get
a Lyapunov-like function if D # @, or a true
Lyapunov function if D = @. Basing on this,
an estimate of the region of attraction or an
implication for the behavior of the trajectories
near the equilibrium will be uncovered.

Concretely, we consider the system
x(t) = f(¢t,x(t)),x(t) e R",vt > 0. (0.1)
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Assume that U is a domain of R"™ and
x* = 0 € U is an equilibrium, and that

f=(fifo )Ry xU->RY (0.2)

is locally Lipschitz. For each t, > 0, and each
& €U, assume that t— ¢(t, ty, &) is the
solution of (1.1) such that ¢(ty,tg, &) = €.
Then, the region of attraction of the
equilibrium at the origin of the system (1.1)
with respect to t, is defined by

Rbo == {& € U: lim,osup P (¢, ty, &) = 0}
The region of attraction of the equilibrium at
the origin is defined by

R = ﬂ:RtO

to=0
={§ € U:lim, o, P(t, ty,§) = 0,Vt, = 0}.
Let 0 <T' <T'" be constants and PS: R™ —
R™ be a piecewise scaling function. Let
N c U be a set such that the interior of

M = PS(z
z€Z™ PS(z+[0,1]")c NV
+ [0,1]™)
is the connected set containing the origin. Let
D := PS ((dl,dl) X (dy, dy) x..x (dy, &n)) be
the set of which closure is contained in the
interior of M, and either D =@, or d; < —1
and d;>1,vi=12,..,n. Let ¢t=
(to, tq, ..., tyy) be a vector such that
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T'=ty<t;<..<ty=T".
Assume that f has all second order partial
derivatives which are continuous and
bounded on [T',T"] x (M\D). Define the
piecewise scaling function PS:R x R" —
R X R™ by

PS(i,x) = (t;, PS(x)),Vi = 1,2,...,n. (0.3)

Define a seminorm ||-|[. on R x R™ through
an arbitrary norm ||-|| of R™ by ||(xq, X)|l, =
IxI], V(xo,%) € R x R™. Define the set G as

{ReERXRM& € PS(ZxZ") n ([T",T"] x (M\D))},
and X = {||x|| | x € PS(Z™) n M}. Define
for each permutation ¢ of {0,1, ..., n} a vector
X7 = Yiziesw),¥i=01,...,n+1 Let Z
be the set of all pairs (z,J), for each z €
Z3¢1 and each J c{1,2,..,n}, such that
PS (T?J(z + [0,1]”*1)) is contained in
[T',T"] x (M\D), where

RI(t,x1, %5, ., Xy) =

(t, (D% Wy, (—1)% P, ..., (—1)X®x,)

and y is the characteristic function of J. For
each (z,J) € Z, set y? = PS (RJ(z + x"))
Lety = {(y&",y%P)|o,(2.9) € 2,i =0, ..., n}

be the set of every pair neighboring grid
points in G. Moreover, V(z,J) € Z,Vr,s =
0,1,..,n, set Bfﬂg) to be a bound of ;r—zafs on
the set ﬁ‘(ﬁﬂ(z+ [0, 1]”“)). For each o,

define ATY) to be e, - (y&? —y@=d)],

where e, is the r-th vector in the standard
basis of R"**1. Set

@y . _ 1 @) @) (4(2I) (z.J)
Eo,i =5 rs OB AO‘T‘l (AO'TL +Aar0)

2. LINEAR PROGRAMMING PROBLEM

The variables of the LPP are IT, W[y], T[y],
and V[X],C[X,¥], Vy € X,VXRE€ G V(X V)€
.

The linear constraints of the LPP are:
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(LC1) Let X = {yy,y1, .., Yk} be numbered
in an increasing order. For an arbitrary
constant € > 0, we require that

Ylyol = Tlyol, ey1 < Wly1l, ey1 < Tly1l,

andthatvi =1,2,...,K — 1,
Ply;:] — Y[yi-1] < Plyip1] — Lp[)’i]’ (0.4)
Vi — Vi1 YVi+1 — Vi
Iyl = T[yi—4] < Ilyis1] — F[)’i]. (05)
Vi = Yi-1 Yit1 — Vi

(LC2) vx € G: P[lIX|l.] < VIX].
If D = @: V[X] = 0 whenever [|X]|..
If D + @, given an arbitrary § > 0,

V[X] < lIJ[xmin,aJV[] -6
for all X = (t,x) having x € PS(Z™) n 4D,
where
Xminon = min{||x|| |x € PS(Z™) n 0M}.
Moreover, Vi = 1,2, ...,n,andj = 0,1, ..., M:
V[tiep + PS(d;e))] < —TIPS(d;e;) - e;,
V[tieo + PS(d;e;)] < IPS(d;e;) - e;.
(LCI) VX ) €V:
—CIR Y] IR =Vl < VIXK] - V[y] <

CIZ VIR = Fllo < MK — Fllco-
(LCA) V(z,J) € Z,Yo,Vi=0,1,..,n+ 1:

i V[Y(ZJ) —Vygity (&
= @) y<z.a)) Lo

€s(j) ya] o,j+1

aj ’ 0’]+1

E(ZJ)C[y(ZJ) (ZJ)> (0.6)

<-r[|v%

Here, f;, is the constant function 1, defining
on Ry X U.

The objective function is not needed.

This LPP for the system (1.1) is denoted by
LP(NV,PS,t,D,||-|l). We have translated the
problem of constructing a Lyapunov function
into an LPP. Then, for the LPP, there exists
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an algorithm to search for a feasible solution,
the simplex algorithm.

3. PARAMETERIZE A CPA LYAPUNOV
FUNCTION FORM A  FEASIBLE
SOLUTION OF THE LPP

Assuming that the LPP has a feasible solution
for variables I1, ¥[y], '[y], and V[X], C[X,¥],
forvy e X,vX € G,V(X,¥) € Y. Let index in
an increasing order the set
X ={yo, V1, ., Vx}. Define CPA functions
Y,y from Ryp — R by: 4(0) = 0,y(0) =
0,andVvi=0,1,..,K — 1, set

l/)(}/) — lp[y] + "p[yi+1]_q"[3/i]
= L

Yi+1~Yi
I'ly; =TI'ly;
y) =Tyl + % -y
for every y € [y;, yi+1], and set
o Ylygl-¥lyk-1]
Y(@y) = Wlyg_1] + R O = yk-1)

Tlyg]-Tlyg-1l (y — Vg 1)

o =)

Yy =Tlyg-1] +
for every y € (yg, ).
Define a CPA function on PS~*([T",T"] x
(M\D)) by W(t,x) = V[t,x],V(t,x) € G.
Theorem 1. v,y are convex K functions. For
all (t,x) € [T',T"] x (M\D), we have
P(IxI) = W(t, x).
If D=9, then ¥(0) =W (t,0) =0, for all
te [T, T"].if D+ @, then
min W(t,x) < max W(t,x)
te[T', "]
— 4.
Assume that ¢ is the solution of the system
(1.1) satisfying that ¢(tg, ty, &) =& €U.
Then, V(t, ¢(t, to, §)) in the interior of the set
[T',T"] x (M\D), we have

YK—YK-1

te[r!, ']

W(t+h¢(t+hty,&)—W(tdt t, )

Ji, s :
< —v(lo@ to, OID.  B.1)

Proof. Refer to [3].

Since Theorem 1, we see that in the case
D=0, W is atrue CPA Lyapunov function
for (1.1). The following result suggests us a

nice approach to find an estimate of the
region of attraction R, which is the main
contribution of this paper.

Theorem 2. Let the norm ||-|| in the LPP be a
k-norm (1 < k < ). Define the set Q by
Q={0} if D=9, and Q::Du{xe
M\D| maxer 1 W(t,x) <

maX e[z’ 11 yeap W (t, Y)},

if D = @, and the set A by

A =

x € M\D | MaXe[r’ 177] wW(t,x) < mMaXe[r’ 177], W(t, y)}

yeEOM
koo
Set Eq = [IXi eillq, where q:=-— if
1<k<00,q:1|fk:oo’andq:oo”:

k=1

Then, we have

() If3t € [T',T"],3t, = 0, and 3¢ € U such
that ¢(t,ty, &) € Q, then ¢(s,ty, &) € Q for
all s € [t,T"].

(i) If 3t e [T, T"],3t, =0, and IE €U,
such that ¢(t,ty, &) € M\D, then for each
s € [t, T"] fulfilling that ¢ (sg, ty, &) € M\D
forallt < s, < s, we have

W(S' ¢(S! tO' E))
< W(t,(p(t, to,f)) exp <—HSE—;>. (3.2)
q

(iii) If D = @, then W is a Lyapunov function
for the system (1.1), the equilibrium x* = 0 is
uniformly asymptotically stable, and A is a
subset of the region of attraction R.
Moreover, the solution satisfies (3.2) for all
set,T"] if ¢(tt,,&) €A for some
te[T',T"],t,=0,and & € U.

If D=0 and ¢(t,ty, &) € A\Q, for some
te [T, T"],ty, =0, and & € U, then IAT* €
(¢, T"] such that (3.2) fulfils Vs € [t,T"],
(T, ty, &) € 0D, and ¢ (s, ty, &) € Q for all
sEe|[TsT"].

Proof. Refer to [1], [3].
Note that in Theorem 2, if D = @, the set A is
an estimate of the region of attraction R.
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Enlarging A4 as much as possible means
getting the best estimate of R. Therefore, an
algorithm is naturally arise to look for such an
estimate. This is the subject of the next
section.

In the case D # @, however, having no
feasible solution for the LPP does not mean
the nonexistence of the region of attraction,
and therefore, it is hopeless to find any its
estimate. The only information extracted from
this fact is that the region M'\D on which a
feasible solution of the LPP is searched is
unsuited or it simply means that the partition
performed on that region is not good enough,
and should be replaced by a new one as long
as the hope for the search of a feasible
solution is not ended. The basis of such an
endless hope is stated in the following
theorem.

Theorem 3. (Constructive converse theorem)

Assuming that [—a,a]™ c R, the region of
attraction for some a >0, and that f is
Lipschitz, that is there exists a constant L > 0
such that Vs, t € Ry, and Vx,y € [—a, a]™,

I£(t,x) — £(s, Il < L(Is — t| + lIx = yID.
Assume further that either x*=0 is a
uniformly asymptotically stable equilibrium
point or there exists a Lyapunov function
W € C?(Rs X [—a,a]™\{0}). Then, for
every constants 0 < T' < T" < o, and for
every neighborhood O c [—a,a]™ of the
origin, maybe arbitrarily small, it is possible
to parameterize a Lyapunov function

W T, T"] % ([-a,a]™\D) — R.
Strategy of the proof. The idea to prove
Theorem 3 is as follows: Firstly, choose a
positive integer m such that

D = (—2k"™q, Zk‘ma)n c9,

for some integer 1 <k <m. Define the
piecewise scaling function PS: R" — R" by

PS(j,jzs s jn) = @27 (1 J2s oo Jn) - (3:3)
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for all (ji,j2, .., jn) €Z", and a vector
t:= (ty, t1, ..., tym), where ti=T"+
j27™(T" —T') for all j =0,1,...,2™. It is
sufficient to prove that for an arbitrary norm
[|-]| of R™, the LPP LP([—a, a]™ PS,t,D,||-||)
has a feasible solution, whenever m is large
enough. However, basing on the non-
constructive converse Lyapunov theorem
under the condition of a uniformly
asymptotically stable equilibrium point for
the system (1.1), we can be sure that there
exists a way to assign the appropriate values
to the variables of the LPP (even we merely
know this existence but an appropriate choice
for these parameters is determined by the
simplex algorithm). For the derivation of
these parameters, refer to [1].

4. ALGORITHM TO ESTIMATE THE
REGION OF ATTRACTION

In the case when there exists a Lyapunov
function W (¢,x) in the C2(Rso X (0\{0})),
for a neighborhood O of the origin of R", or
especially, when that origin is a uniformly
asymptotically  equilibrium  point, the
following algorithm secures an estimate of the
region of attraction.

Algorithm. Let T'>0 be an arbitrary
constant. Consider an arbitrary norm ||-|| on
R™. Assume that f possess all bounded second
order partial derivatives on [0,T'] x Q for
each compact subset Q of R™. Take an integer
N, > 0 as the limit level, to which we might
expect, of the repetition, for searching the
prior estimate of R.

Step 1. Initiate a region [—a,a]™ c U by
taking a positive number a. Take an arbitrary
neighborhood O < [—a, a]™ of the origin and
a constant B such that

0%f

B >
0%, 0%,

®)

- (4.1)

max
r,s=0,1,...,n
[0,T']x[-a,a]™

Initiate the integers N := 0, and assign to m
the smallest positive integer such that



Dinh Van Tiép va Dtg

Tap chi KHOA HOC & CONG NGHE

185(09): 139 - 145

D= (—a2™™,a27™" c 0.
Step 2a. Define the piecewise scaling
function PS:R"—>R"™ by: for all
U120 Jn) € LT,
PS(j1,j2, i Jn) = @27 (2o s Ju)» (4.2)
and the vector t = (tg, ty, ..., t;m) by

tj = j27"T',Vvj = 0,1,..,2™

Step 2b. For each k = 0,1, ..., N, check that
whether the linear programming problems
LP([—a,a]™ PS,t,D)

has a feasible solution or not. If one of the
LPP has a feasible solution, then go to step
2d. If there is no LPP possessing a feasible
solution, then set m:=m+1,N:=N+1
and go back to step 2a if N < N,. Otherwise,
if N = N, move to step 2c.

Step 2c. Decrease the size of the hyper-box
[—a,a]™ €U by setting a:=2"'a and go
back to step 1.

Step 2d. Use the found feasible solution to
parameterize a CPA Lyapunov function for
the system (1.1).

Step 3. Use the constructed CPA Lyapunov
function to secure an estimate Q. of the
region of attraction R, where

By = qmax o] W(t,x) <
x€[-a,a]™\D

ar, (4.3)

¢ :==sup{a > 0: B, c [—a,a]™}, (4.4)
Qc =D U {x € [-a,a]™\D: max,c[o 1 W(t,X) <
c}.(4.5)
Theorem 4. The algorithm always succeeds
in finding an estimate of the region of
attraction for the system (1.1), whenever the
system fulfils the hypotheses preceding the
algorithm.

Proof. This is a straightforward consequence
of Theorem 3.

Remark. Let a, k and m be the number with
which we obtain a feasible solution for the
corresponding LPP. Define the set

U:=DU{x€[-aa]™\D: maXepor W(t,x) <
€}, (4.6)
where € := max,c[o /) W(t,x) > 0, and
XEON
D = (—a2*™, a2k"™)". (4.7)

Then every trajectory starting inside Q. will
be attracted to U, and reaches the boundary
dU in a finite period of time, and will be
captured in here forever.

5. EXAMPLE

Consider the system x = f(t, x), where
£(t%) = £(t,x,y) = [—Zx + y cos t]

xcost— 2y
This is a nonautonomous linear system. The
transition matrix of the system is

sint—sintg —e

e~ sint+sin tg

D(t, ty) = e 2t [e ‘S“‘“Si“t"]
e

sint—sintg
satisfying that ||®(t, ty)|l < Ke2(¢~t0), for
some constant K > 0. Therefore, the origin is
a uniformly asymptotically stable equilibrium
point, (cf. [2]). For each (z,J) € Z, we set
X(g) = |e1 : PTS'(INZJ(Z + el))|,

and y, g) = |e2 -PS (T?J(z + ez))|.
Take B(E,Z(SJ) = max{x(zﬂ),y(zﬂ) }, and
B = 0,8 = 0,83 = BE =1,
B = P = 0,B%P = B{HP = 1.
Take the domain 2V, and D in the introduction
section as & := (-0.55,0.55)2,D = (—0.11,0.11)2.
Define the piecewise scaling function PS by

n
PS(0) = ) sign(x)P(xiDe;
i=1
forall x = Y-, x;e;, where P is a continuous
piecewise affine function and that
P:[0,5] — [0,0.55],
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P(j) =0.11 xj,Vvj =0,1,...,5. Take the
vector t = (0,0.3125,0.75,1.3125, 2).

The CPA Lyapunov function W(t, x,y)
parameterized from a feasible solution is
sketched for the fix time-value t = 2 in figure
1. Here, the CPA Lyapunov function

W:[0,2] x ([-0.55,0.55]%\(—0.11,0.11))% - R,
secures an estimate Qg sz (cf. figure 2) of the
region of attraction R, where

Qoss = {x € [-0.55,0.55]™ max;epo) W (t,X) <
0.55}.

Figure 1. The graph of the function (x,y) —
W2, x,y).

LE]

QU.SS 04

x

Figure 2. The estimate (2, 55 of the region of
attraction R.

6. SUMMARY

The algorithm to find a lower estimate for the
region of attraction for the case of a
nonautonomous system is an extension of one
for that of an autonomous system presented in
[4]. The strategies are quite similar except for
some adjustments to treat the time-varying
case by considering the time variable t as an
extra state variable x, to translate the original
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system into an autonomous one. Then the
algorithm for an autonomous system is
applied to the obtained system.

The algorithm always succeeds if the system
possesses a uniformly asymptotically stable
equilibrium point at the origin. For an
autonomous system, a region D of R™, which
will Dbe excluded from the domain of
constructed CPA Lyapunov function, can be
ignored if the origin an exponentially stable
equilibrium point as presented in [4]. It is not
difficult to see that this is also the case for a
nonautonomous  system  possessing  a
uniformly exponentially stable equilibrium
point at the origin. For showing this, we need
to modify a little the above algorithm with an
extra step of parameterizing the CPA
Lyapunov function in a small neighborhood
of the origin to cover up the hole D. This
method is similar to the algorithm presented
in [4].
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TOM TAT
MQT THUAT TOAN UGC LUQNG MIEN HAP DAN CUA CAC HE PONG LUC
PHI O-TO-NOM

Pinh Vin Tiép’, Pham Thi Thu Hing
Truong Dai hoc Ky thugt Céng nghiép - BH Thadi Nguyén

Bai bao nay nham muc dich gisi thiéu mot thuat toan tim uéce luong dudi cua mién hap dan cho
mot hé dong luc phi 6-t6-ndm. Két qua nay 12 mot sy mé rong cua két qua dat duoc & bai bao dua
ra boi cac tac gia Tiép va Hué (2018), & do, bai toan dwogc dat ra cho hé 6-t6-ndm vai goc toa do 1a
mot diém can bang 6n dinh dang mil. Phuong phap tiép can duoc tién hanh ¢ day 1a s dung mot
bai todn quy hoach tuyén tinh dé xay dyng mot ham kiéu Lyapunov, lién tuc, afin tirng manh. Tir
d6, viéc ude lugng dugc tién hanh mot cach hiéu qua.

Tir khoa: mién hap dan, hé phi 6-t6-ném, bai toan quy hogch tuyén tinh, Iy thuyét Lyapunov, ham
Lyapunov lién tuc, afin tezng manh.
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