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NEW RESULT ON INPUT-OUTPUT FINITE-TIME STABILITY OF
FRACTIONAL-ORDER NEURAL NETWORKS

SUMMARY
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In this paper, we investigate the problem of input-output finite-time (10-FT) stability for a class of
fractional-order neural networks with a fractional commensurate order 0 [J o [ /. By constructing
a simple Lyapunov function and employing a recent result on Caputo fractional derivative of a
quadratic function, new sufficient condition is established to guarantee the 10-FT stability of the
considered systems. A numerical example is provided to illustrate the effectiveness of the

proposed result.
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INTRODUCTION

Fractional-order neural networks have
recently attracted an increasing attention in
interdisciplinary areas by their wide
applications to physics, biological neurons
and intellectual intelligence. In the form of
fractional-order derivative or integral, the
neural networks are importantly improved in
terms of the infinite memory and the
hereditary properties of network processes.
Besides, fractional-order differentiation is
proved to provide neurons with the
fundamental and general computation ability,
facilitating  the  efficient  information
processing,  stimulus anticipation and
frequency-independent ~ phase  shifts  of
oscillatory neuronal firing. As a result, many
interesting and important results on fractional-
order neural networks have been obtained (see,
[1], [2], [3] and references therein).

In many practical applications, it is desirable
that the dynamical system possesses the
property that its states do not exceed a certain
threshold during a finite-time interval when
given a bound on the initial condition. In
these cases, finite-time stability concept could
be used [4], [5]. Roughly speaking, fractional-
order neural networks are said to be FT stable
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if the states do not beat some bounds within
an arranged fixed time interval when the
initial states satisfy a specified bound. It is
important to recall that FT stability and
Lyapunov asymptotic stability (LAS) are
independent concepts; indeed a system can be
FT stable but not LAS, and vice versa [6].
LAS concept requires that the systems operate
over an infinite-time interval; meanwhile, all
real neural systems operate over infinite-time
interval. Therefore, it is necessary to care
more about the finite-time behavior of
systems than the asymptotic behavior over an
infinite time interval. Some interesting results
have been developed to treat the problem of
finite-time stability of fractional-order neural
networks systems in the literature [7], [8], [9].
By using the theory of fractional-order
differential equations with discontinuous
right-hand sides, Laplace transforms,Mittag-
Leffler functions and generalized Gronwall
inequality, the authors in [7] derived some
sufficient conditions to guarantee the infinite-
time stability of the fractional-order complex-
valued memristor-based neural networks with
time delays. Some delay-independent finite-
time stability criteria were derived for
fractional-order neural networks with delay in
[8]. Recently, the problem of FT stability
analysis for fractional-order Cohen-Grossberg
BAM neural networks with time delays was
considered in [9] by using some inequality
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techniques, differential mean value theorem
and contraction mapping principle.

So far, the FT stability mainly concerns the
specified bounds on the system states with a
given initial bound; however, sometimes just
the outputs, rather than the states, are required
to be restrained within a bound. In this case,
the 10-FT stability of a system is of
significance. With regard to integer-order
systems, the concept of 10-FT stability was
originally introduced by Amato et.al in [10].
A system is IO-FT stability if, for a given
class of input signals, the output of the system
does not exceed an assigned threshold during
a specified time interval. Up to now, some
efforts have been devoted to the research of
IO-FT stability for integer-order systems (see,
[11], [12]). Regarding to fractional-order
systems, to the best of our knowledge, there is
only one result concerning the 10-FT stability
of linear systems [13]. While FT stability
analysis of fractional-order neural networks
systems have been widely studied and
developed, (see, [7], [8], [9] and the
references therein), the problem of IO-FT
stability of fractional-order neural networks
has not been considered in the literature. This
problem is challenging due to the complexity
of fractional-order calculus equation and the
fact that integer-order algorithms cannot be
directly applied to the fractional-order
systems. The aforementioned discussion
inspires us for the present study.

In this paper, we study the problem of 10-FT
stability of fractional-order neural networks.
The main contributions of this work can be
summarized as follow. By constructing a
simple Lyapunov function and employing a
recent result on Caputo fractional derivative
of a quadratic function, we derive new
sufficient condition guaranteeing the 10-FT
stability of the considered systems. The
condition is with the form of linear matrix
inequalities (LMIs), which therefore can be
effectively solved by using existing convex
algorithms. Moreover, a numerical example is
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provided to show the -effectiveness and
applicability of the proposed scheme.

The remaining of this paper is organized as
follows. Some necessary definitions and
lemmas are recalled in the next section.
Sufficient condition ensuring the 10-FT
stability of fractional-order neural networks is
shown in the Section 3. Finally, a numerical
example is given to present the effectiveness
of the scheme in the Section 4.

Notations: The following notations will be
used in this paper: R"™ denotes the
n —dimensional linear vector space over the
reals with the Euclidean norm (two-norm) ||. ||
given by x|l = /xZ + -+ x2,x =
(x1, .., xp) € R™. R™™ denotes the space of
n X m matrices. For a real matrix A, 4,4 (4)
and  A,,;,(A) denote the maximal and the
minimal eigenvalue of A, resppectively.
Matrix P is positive definite (P > 0)
if xTPx >0,Vx#0.P>QmeansP — Q >
0. The symbol Ly, := L (T, R), Where R is
given symmetric positive definite matrix,
refers to the space of essentially bounded
signals, w(.) € L (Tf,R) if w(t) <1,VtE€
[0, T¢].
PROBLEM
PRELIMINARIES

To begin with, we recall the fundamental
definition of the fractional calculus found in
[14]. The fractional integral with non-integer
order a > 0 of a function x(t) is defined as
follows:

STATEMENT AND

1

tlex(t) = @)

t
f (t —s)* 1 x(s)ds,

to
where x(t) is an arbitrary integrable function,
¢,/ denotes the fraction integral of order
on [t,t] and T'(.) represent the gamma
function. The Caputo fractional-order
derivative of order a >0 for a function
x(t) € C"*([to, +0),R) is defined as
follows:
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1 ft x™(s)
['(n—-a) “to (t—s)at+1-n

EDEx(t) = ds, t>t, >0,

where n is a positive integer such that n — 1 < a < n. In particular, when 0 < a < 1, we have:
£x(s)

TA-—aJ, -9
Especially, as in [14], we have (D?x(t) = x(t) and [SD}x(t) = x(t). Let us now consider the
following controlled Caputo fractional-order neural networks:

EDEx(t) = —Ax(t) + Df (x(0)) + Ww(6),t =0

y(&) = Cx(v), 1)

x(0)=0
where 0<a<1 is the fractional commensurate order of the system,
x(t) = (x,(0), ...,xn(t))T € R™ is the state vector, y(t) € R is the output vector, w(t) € R? is
the disturbance input vector, n is the number of neural, £ (x(£)) = (fy(x1(®)), ., (R )T €

R™ denotes the activation function, A = diag{a,, ..., a,} € R™" is a positive diagonal matrix,
D € R™" is interconnection weight matrix, C € R?*™, W € R™*P are known real matrices.

Assume that the activation function f;(.) is continuous, f;(0) = 0, (i = 1, ..., n) and satisfies the
following growth conditions with the growth known positive constants y;(i = 1, ..., n):

CDEX(L) = t>t,=0.

|fi(x) - fl(y)l < Yilx - }’|;(l =1, ---;n)'Vx'y € R (2)
In the case where y = 0, the condition (2) becomes:
i) <vilx|,i=1,..,n),Vx ER. 3)

Now, let us recall the following definition and some auxiliary lemmas which are essential in
order to derive our main results in this paper.

Definition 1.([10]) Given a positive scalar Tr > 0, a symmetric positive definite matrix Q €
R7*4, the system (1) is said to be 10-FT stable with respect t0 (Lo, Q,Tf) if w(.) € Lo,
implies y™()Qy(t) < 1,vt € [0, Ty].

Lemma 1.([14]) If x(t) € C™([0,+x),R)and n —1 < a < n,(n = 1,n € Z"), then

ol (§DEx(D) = x(6) — Thzh & x®(0).
In particular, when 0 < @ < 1, we have
oI (§DFx()) = x(£) — x(0).
Lemma 2.([15]). Let x(t) € R™ be a vector of differentiable function. Then, for any time instant
t > t,, the following relationship holds:
EDE(xT ()Px(1)) < 2xT(t)PE DEFx(t), Va € (0,1),Vt =ty = 0.
MAIN RESULTS

The following theorem provides sufficient conditions under which the fractional-order neural
networks (1) is IO-FT stability with respect to (Lo, @, Tf).

Theorem 1. The fractional order neural networks (1) 10-FT stable with respect to (Lo, Q, Tf) if
there exist a symmetric positive definite matrix P and a diagonal positive matrix A such that the
following conditions hold:
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* —A 0
* * —R

M PD PW
<0,

[(a+1
cTocC < %P,
f
where M = —PA— ATP + HAH, H = diag{y,, ..., ¥n}.
Proof. We consider the following non-negative quadratic function:

V(x(8)) = xT (&) Px(¢).

(4a)

(4b)

It follows from Lemma 2 that the & —order (0 < a < 1) Caputo derivative of V(x(t)) along the

trajectories of system (1) is obtained as follows:
EDEVx(t)) < 2xT(t)PEDEx(t)
= xT(t)[-PA — ATP]x(t) + 2xT ()PDf (x(t)) + 2xT PWw (t).
The following inequalities are resulted from the Cauchy matrix inequality:
2xT(O)PDf(x()) < xT(©)PDATIDTPx(t) + fT (x())Af (x(¢))
2xT(OPWw(t) < x"(OPWR'WTPx(t) + 0" (H)Rw(t)
Since A is a diagonal positive matrix, from (3), we have the following estimate:
fTx@)Af (x (1) < x" (£)HAHx(t)
From (5) to (7), we obtain:
DAV (x(D) < xT(0)02x(t) + 0T (ORw (D),
where
Q=—-PA—ATP+PDADTP + PWR™IWTP + HAH.
From Schur Complement Lemma, 2 < 0 is equivalent to condition (4a), implying:
EDEV(x(®) < w"(DRw(t), vt € [0, Ty].

(5)

(6a)
(6b)

()

(8)

9)

Since V(x(0)) = 0, by integrating both sides of (9) (with order &) from 0 to ¢, (0 < t < Ty), and

using Lemma 1, the following inequality is obtained:
1 t
xT(®)Px(t) < oIf (wT(®Rw(D)) = m[ (t — ) Tw’ (s)Rw(s)ds
0

< 1
“I'(a)
From (4b) and (10), we have:

a

—T
Ma+1)

t
f (t—s5)1lds <
0

yT(®)Qy(t) = xT(t)CTQCx(t) < wa(t)Px(t) <1,vte[0,Tf
f

which completes the proof of Theorem 1.
NUMERICAL EXAMPLES
The example below is presented to illustrate the effectiveness of the proposed method.
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Example 1. Consider the following fractional-order neural networks:
D& = —Ax(t) + Df (x(t)) + Ww(t),t =0

y(©) = Cx(t) (11)
x(0)=0
where a = 0.9; x(t) = (x,(t), x,(t), x3(t))T € R3, w(t) = et € R, the activation function are
given by:
1
fitai (D) = §(|xi(t) + 1 = |x(6) = 1],i = 1,2,3,
and
50 0 1.0 0.2 09 1.0 0.11"
A=10 3 0|,D=]04 03 1.0|,W =|05( C=1]0.3].
0 0 2 02 01 0.8 0.9 0.2

It is easy to verify that condition (2) is satisfied with H = diag{1,1,1}. Given Ty = 10,R =
[1], @ = [1]. By using Theorem 1, wefound that the LMI conditions of (4a) and (4b) are satisfied

with
1.4053 —0.0194 —-0.4344
P=|-0.0194 2.7889 —0.7632|,A=
—0.4344 —-0.7632 1.9241

2.0518 0 0
1.4932 0
0 2.1278

Thus, system (11) is 10-FT stable with respect to (L., @, Tr) based on Theorem 1.

CONCLUSION

This paper has investigated the problem of
IO-FT stability of fractional-order neural
networks. Based on constructing a simple
Lyapunov function and using some properties
of Caputo fractional derivative, sufficient
condition for the I0O-FT stability of the
considered systems is derived in the form of
linear matrix inequalities, which therefore can
be effectively solved by using existing convex
algorithms. The effectiveness of the result has
been demonstrated via the numerical example.
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KET QUA MOI VE TiINH ON PINH HUU HAN THOI GIAN PAU VAO-DAU RA
CUA HE NO RON THAN KINH PHAN THU

Dwong Thi Hﬁng*
Truong Pai hoc Khoa hoc — DH Thai Nguyén

Trong bai béo nay, ching t6i nghién ciru bai todn 6n dinh hitu han thoi gian dau vao-dau ra cho
mot 16p hé noron than kinh phan thia. Biang céch xay dung mot ham Lyapunov don gian va sir
dung mot két qua gan day vé tinh dao ham phan thr Caputo ciia mot ham toan phwong, ching
t6i dua ra mot diéu kién du cho tinh 6n dinh hitu han thoi gian ddu vao-dau ra cia 16p hé noron
than kinh phan tht. Mot vi du s6 duoc dua ra && minh hoa tinh hiéu qua cua két qua do chung

toi dé xuét.

Tur khéa: Hé noron than kinh phan thir; On dinh hitu han thoi gian dau vao-dau ra; Bat ding
thitc ma trdn tuyén tinh;, Pao ham Caputo; Ma trgn doi xumg Xac dinh duong.
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