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ABSTRACT 
Cranes are commonly used in the industry, in the military to move heavy loads, or assembly of 
large structures. Three basic movements of the crane is moving vertically, horizontally and lifting 
loads. However, the vibration of the load during move affects the safety and operational efficiency 
of the system. The velocity escalation to enhance performance as the vibration is caused by losing 
of time and counterproductive. This paper proposes solutions to improve the efficiency of the 
crane in conditions of appropriate parameters. A dynamic model of the overhead crane system is 
also developed in three-dimensional space based on Euler- Lagrange method, including the 
description of the movement of the load in the vertical, horizontal and lifting direction. Effects of 
parameters variation as load mass, hoisting/ lowering force on the response of the system on the 
time domain and frequency domain are discussed through simulation results. The article also 
suggestes the parameter range to work effectively. Finally, some conclusions are presented 
Keywords: Dynamical models; 3D crane. Euler- Lagrange method; time domain and frequency 
domain, power spectral density, effective parameter range 

INTRODUCTION 

Overhead crane systems in three-dimensional 
(3-D crane) often used to transport heavy 
loads in factories and habors.... During speed 
acceleration or reduction always cause 
unwanted load swing at the destination 
location. Disturbances such as friction, wind 
and rain also reduces performance overhead 
cranes, it adversely impacts on the crane 
performance. These problems reduce the 
efficiency of work. In some cases, they cause 
damages to the load or become unsafe. 
Therefore, the divelopement and analysis of 
dynamic models with the change of crane 
parameters is necessary to promote the 
working efficiency of the crane. 
The mathematical description and nonlinear 
control as the crane was studied from the 
early age [8,10,11,13,14]. The development 
of a nonlinear dynamical models and methods 
for crane control 2-D, 3-D have been written 
in many reports [1,6-8]. Most of the reports 
focuse on the issue of handling to minimize 
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vibration loads [2,4,5,9]. In those studies, the 
kinematic equations of complex nonlinear 
systems for cranes have been analyzed to 
optimize the direction controls. From the anti-
vibration control by rational design of 
mechanical components or signal [3,12], 
analysis of the impact of these parameters 
[4,5,6], to designing controllers based on 
theory of the modern control [5,6]. In 
published reports, the authors focused on 
solutions to design controllers or analyzed the 
influence of system parameters on the time 
domain. This study presents a general model 
of the crane and the kinetic equation of the 
crane system in three-dimensional space, 
Euler-Lagrange principle is applied to 
describe the kinetics of the system The 
simulation algorithm is implemented in 
Matlab. Responses of trolley positions, swing 
angles of the system and the power spectral 
density are obtained in both time domain and 
frequency domain. The effect of payloads and 
hoisting force by varying these two 
parameters are presented. Simulation results 
are analyzed and concluded. 
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MODELING OF A THREE DIMENTIO
NAL OVERHEAD CRANE 
Figure 1 describes the coordinate system of a 
3-D crane and its load. XYZ is set as a fixed 
coordinate system and X^YcZ^ as trolleys. The 
axis of the trolley coordinate system are 
paralleled respectively fixed coordinate 
system. The girder moves along the X^ axis. 
The trolley moves along the Y^ axis. 
Coordinates of the trolley and load are shown 
as the figure. 0 is the swing angle of the load 
in a space and is subcategorized into two 
components: 9^ and 0^. I is the rope length 
from the trolley to the load. 

= ^ ( M ^ 2 + iWyy2 + M, i2 )+^v2 

Xp,yp.zp) 

Figure 1, The description of the 3-D crane 
The position of load (Xp, yp, Zp) in fixed 
coordinate can be performed: 
Xp =x + lsm0,cos6^; 

y^=y + ls\ne^; fl) 

Zp =-/cos^, COŜ j, 

This Study refers to three simultaneous 
movement of girder, trolley and load. 
Therefore, the parameters x, y, 1, B^ and 6^ is 
defined in the general coordinates to describe 
motion of overhead crane. 
The motion of 3-D overhead crane is based on 
Lagrange's equation. Here the load is assumed 
as a point mass located at the center. The mass 
and the springiness of the rope are ignored. T is 
called the kinetic energy of cranes including the 
girder, the trolley and the load; P is called the 
potential energy of the crane. 
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(2) 

r = r,,itr^g = mgl(l - cosd.cosd^:}^) 
where M^ is a traveling component of the 
crane system mass. My is a traversing 
component and M[ is a hoisting component 
m, g and Vp are the load mass, the gravity and 
the load velocity, respectively. 
vi^ij + fi+^l 

vl=xl+yl+zl=x^+y^+i^ + 
/ ' coŝ  e^e^ +1^0y + 2(sin 9, cos9j + 
lcos9^cosB^e, -/sin6,s\ne^$^)x + 

2{%]sie)+izose^e^)y 

The Lagrange function is defined as: 

+y^p + m^i(cose.coie^ -1) (s) 

The dissipation function (mainly due to 
friction) is defined as follows: 

(4) 

(6) (D = -{D^x'' + D^y^ + £),/^) 

where D^ Dy va D; denote the viscous 
damping coefficients according to the x, y and 
/ motion. 

The general Lagrange equations is written: 

dl dq, 9g, dg, dg, 
where F^, is the corresponding generalized 
force ith, which belongs to the generalized 
coordinate system. The equations of motion 
of the crane system are defined by inserting L 
and O in Lagrange equations with tlie 
generalized coordinate systemx, y, I, 9^,6f. 
(A/, + m)x&mlcosd^ cosO^d^ -mls,\s\6, imO^Q^ 
+ msin e, cose J + D^x + ImcosS, cos6j6, (°' 

-2ms'\a6,s'm0j0^-mls'm&,cosO^d^ 

~2ml cos6,sind^d,d^-ml sin 6, cosd^d^^ -f, 

(A/̂  +m)j' + m/cos5̂ 6'̂  +msin0^/ ,i^ 

+ D^y + 2mcos0je^-mh\n0^dl = fy 
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(10) 

(11) 

(12) 

(A/, + m)/+ msin 5, cos^^jc + msin ^j, j) + Z),/ 

-mlcQs^ e^&l -mldl -mgcos0^cos6^ = f, 

ml^ cos^ 0^$^ + ml cos0^ cos^^x 

+ 2/«/cos^0^/^^-2m/^ sin fi^j, 00561^^,^^ 

+ mg/sin0,.cos^ = 0 

ml^0y + mlcosO^y-m/sin 5, sin 6 x 

+ 2mli6y + ml^ cos9^sm9ydl 

+ mgi cos0^s'm0y = 0 

where fi. fy, fi are the driving force of the 

girders, the trolley and the load for the x, y, I 

motions, respectively. 

The dynamic model of crane is equivalent to 

the dynamic model of robot having three soft 

bindings. The dynamic model (8) - (12) can 

be performed in the form of the matrix vector, 

as follows: 

M(q)q + Dq + C{q,q)q-^-Giq) = F (13) 

where g is the state vector, F is the driving 

force vector, G(g) is gravitational vector and 

D is dissipation matrix because of the friction, 

respectively: 

q = [x, y, / , e„ 0,f 

F'-[f.,/,,f,.0 .Of 

G{g) = (O,O,-mgcos0,cos0y, mgi sin d^cosOy, 

mgi cos&^ sin SyY 

D = diag(D„D^,D,fifi) 

The symmetric mass matrix M(q) € R'^ " ^^ is 
denoted: 

M{q) = = 

m„ 0 /rt,3 ./J,, ffii. 

0 m ĵ mjj 0 m ŝ 

/Wji mj j iri„ 0 0 

m„ 0 0 /M„ 0 

/«;, ffljj 0 0 ffljj 

M^ +m;/n,3 =msin ^, cos^^; 

m/cos^,cos5 ;mj5 =-m/sin^jSin 

My +m',m2^ =msin^j,; 

m/cos^^;OT3, =msin^^cos^j,; 

msindyim^j =M,+m; 

n i/cos^,cos(9 ;m44 =m/^ cos^^^; 

mj, =-ml sin 0^ sin 0/,m^^ =/«/cos5^;m„ =mt 

M(q) is positive definite when I > 0 and 

[5^ |< ; r /2 , C(q,g) e R^"' is the matrix of 

centrifugal force and Coriolis. 

[0 0 t.-„ t,'„ 

c,, 0 

C{q,g)--

0 0 

0 0 

0 0 

0 0 

= ml cosO.i mlcos0,.s]nd^8y, 

•mhhe^cosS^e-, C|j =-fflsiii^jSinSj,/-jn/cos6jSin^^^ 

Cjj ^mcoŝ ^^ îCjj = mcosOj-mlmOyff/, 

c„ =-m/cos^ej,e^;c35 =-ml0/,c„ = ml cos'8^0/, 

c'44 = ml cos'' 0j-ml^ sin 0̂  cos0^5^; 

Cjj =—m/^sin5^cosffj,5j;Cjj =mW^; 

Cj4 =m/^cos^^sin6^S,;Cjj =m//; 

SIMULATION OF CRANE SYSTEM 
RESPONSE WITH VARIABLE PARAME^TERS 
In this section, the dynamic of 3-D crane (13) 
will be analyzed in the time domain and 
frequency domain. The values of the nominal 
parameters are determined by crane models in 
the laboratory: 

M , =12.85Ag;Z)^-30A' , s /m;M^-5.85Ag; 

D^ = 20A^i / m; A/; - 2.85/:g; £>, = 50A(y / / H ; 

m = 0.85>tg;X = 60A';/^ = 30A^; 

/ = - 8 A ^ ; / > 0 

The gravity acceleration is g = 9.Zmls^. 

Simulation time is 10s, the sampling time is 
1ms. The position and swing angle responses 
of the system and the power spectral density 
are analyzed and evaluated. 

Figure 2, General schematic simulation 
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The system response with difTerent loads 

To observe the affects of the payload on the 
system dynamic, various payloads are 
simulated. The results showed most clearly 
when the mass of load changes from 0,85kg 
to 5,50kg. Figure 3 shows the position 
responses in the x, y, z axis. There are no 
large oscillation in the position response . 
Table 1 synthesizes the relation between the 
mass of load and the trolley positions. 
Respectively, figures 4 and 5 indicated 
responses of swing angle in the x and y 
directions when the mass of the load is 
changed. This relationship has also been 
summarized as in the Table 1. 

Figure 3, Position response in the x directions 
with variation of payload 

Figure 4, Position response In they directions 
•with variation of payload 

" 
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with variation of payload 
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Figure 6. Swing angle 0, with variation of payload 

° ' ' ' ' um!,., ' ' ' " '° Figure 9. Power spectral density 
Figure 5. Position response in the z directions ofdy -with variation of payload 

Table 1. Tlie relation between variation of payload with trolley position and swing angles 

m-0.85 
ni=1.50 
m=2.85 
m=3.50 
m-4.85 
m=5.50 

Trolley position (m) (average) 
X direction 

5.863 
5.797 
5.670 
5.611 
5.491 
5.435 

y direction 
4.533 
4.456 
4.310 
4.243 
4.108 
4.045 

z direction 
0.1351 
0.5295 
1.3700 
1.7620 
2.3270 
2.5120 

Swing angles 

e , (rad) 
±0.6626 
±0.5336 
±0.4076 
±0.3724 
±0.3219 
±0.3038 

(max-min) 

e . (rad) 
±0.5112 
±0.4196 
±0.3150 
±0.2839 
±0.2383 
±0.2218 
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The findings show that if the mass of load is 
increased, the swing angle will decrease, 
vibration frequency will also decrease, 
oscillation period will be shorter. Figure 7 and 
Figure 8 shows the power spectral density 
corresponding to the swing angle in the x 
direction and the y direction. It proves that the 
resonance with oscillation frequency 
increases when the load increases. Thus, this 
study shows that in order to reduce the 
vibrations of the system, we can limit the 
range of the load mass. Accordingly, this 
range is called "effective parameter range,,. 
Even then, if the system is not yet equipped 
with modem controllers, high performance 
with "effective parameter range,, is 
maintained. In this case, when the load mass 
is within 4kg to 5kg. Swing angle and also 
frequency reduces, the settling time is less 
than 3 seconds. 

The system response with different hoisliiig force 
To observe more clearly the effects of the 
system parameters to the vibration of the load, 
especially hoisting force, here we consider fl 
= [-20N, 20N]. Girder force, trolley force and 
other parameters are constant. 

T 

Figure 10. Swing angle 0, with variation 
of hoisting force 

V 

Figure 11. Swing angle 0y with variation 
of hoisting force 
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Figure 12, Power spectral densitys of swing 
e 0j with variation of hoisting force 

Figure 13. The power spectral density of swing 
angle 5, with variation of hoisting force 
Table 2. Relation between hoisting force 

with swing angles 

Hoisting force Swing angle (max-min) 
(N) 

( = -15 
( = -10 
( - - 5 
( = 5 
( = 1 0 
( - 1 5 

e , (rad) 
±1.271 

±0.7208 
±0.6291 
±0.5041 
±0.4598 
±0 4234 

9, (rad) 
±1.251 

±0 5383 
±0 4946 
±0.4245 
±0.3956 
±0.3707 

Figure 8 and Figure 9 show that the swing 

angles as lifting loads are less oscillator than 

as lowering loads. The vibration of the 
response is proportional to the lowering force 
and inversely proportional to the lifting force. 
Figure 10, Figure 11 described power spectral 
densitys of swing angles. Oscillation 
frequency is also proportional to the lowering 
force and inversely proportional to the lifting 
force. Statistical parameters in Table 2 shows 
the relation between the hoisting force with 
the swing angle. Such the results also showed 
that if the lifting force is from ION to 15N, 
the quality of system is good, the settling time 
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is less than 1 second, the overshoot is about 

12%, oscillation frequency is also smaller. The 

results confumed that it is not neccessaiy to 

design a new controller if the hoisting force is 

varied within the "effective parameter range,,. 

CONCLUSION 

This study presents the development of a 

dynamics model of a 3-D overhead crane base 

on the Euler-Lagrange approach. The model 

was simulated with bang - bang force input. 

The trolley position and the swing angle 

response have been described and analyzed in 

the time domain and frequency domain. The 

affection of mass load, hoisting force to the 

dynamic characteristic of the system are also 

analyzed also discussed. These results are 

very useful and important to develop 

effective control methods and control 

algorithms for the system 3-D crane with 

different loads and driving forces. 
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T O M T A T 

M O H I N H H O A VA P H A N T I C H D O N G H O C CUA H E T H O N G CAU T R U C 3D 
K H I T H A Y D O I L V C N A N G HA VA K H O I L U O N G T A I T R O N G 

Nguyen Trung Thinh'*, Nguyen Thanh Tien^ 
Tran Nggc Quy \Nguyen Thj Thu H3ng' 

Trudng Difi hgc Su pham Ky thugt Hung Yen, HQC vien Ky thuat Quan sif 
Vien Khoa hoc vd Cong nghe Quan sif 

Cau tryc dugc su dyng rit pho bien trong cong nghi?p, trong quan s\r de di chuyen nhOng trong tai 
nang, hoic ISp ghep nhang cau ki^n Idn, Ba chuyen dong co ban cua cau true la hanh trinh hpc, 
h&nh trinh ngang v& ning h? tai trpng. Sir rung I5c cua tai trong khi di chuyen de dpa den van de an 
toan vS anh huong d6n hi?u qua l^m vi$c. Tang toe dp \km viec nh5m nang cao hieu suat cang gay 
ra su rung lac ISm hao ton thdi gian, din dSn khSng dat ket qua mong mu6n. Bai viSl nay phan tich 
va de xuat giai ph^p nang cao hi€u qu& khi cho clu true lam vifc trong diiu kien tham so thich 
hop. B^i viet dong thbi mo ta mo hinh dpng luc hpc cua he thong cAu tryc trong khong gian ba 
chieu dya vao phuong phdp Euler- Lagrange, g6m mo ta nhffng chuyln dpng ciia tai trong theo 
hudng dpc, ngang v4 nSng h^. NhOng anh hudng cua su thay d6i kh6i lugng tai trpng va lyc k6o 
nang ha d^n dap ling h§ thong trSn mien thdi gian vi mien tan s6 dugc ph§n tich qua ket qua mo 
phdng. Bai b^o ciing d£ xuat vung tham so lam vi^c hl^u qua. Cu6i ciing la mpt so kit luan. 
Tii- khda: Mo hinh dgng hgc; cau tr\ic 3-D; phuang phdp Euler- Lagrange; mien thdi gian vd 
mien Idn so; mgi do pho cdng sudt, viing tham so hifu gud 
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