System Dynamics

Modeling, Simulation, and Control of Mechatronic Systems

Dean C. Karnopp Donald L. Margolis Ronald C. Rosenberg
CONTENTS

Preface xi

1 Introduction 1
 1.1 Models of Systems, 4
 1.2 Systems, Subsystems, and Components, 7
 1.3 State-Determined Systems, 9
 1.4 Uses of Dynamic Models, 10
 1.5 Linear and Nonlinear Systems, 11
 1.6 Automated Simulation, 12
 References, 13
 Problems, 14

2 Multiport Systems and Bond Graphs 17
 2.1 Engineering Multiports, 17
 2.2 Ports, Bonds, and Power, 24
 2.3 Bond Graphs, 27
 2.4 Inputs, Outputs, and Signals, 30
 Problems, 33

3 Basic Bond Graph Elements 37
 3.1 Basic 1-Port Elements, 37
 3.2 Basic 2-Port Elements, 50
 3.3 The 3-Port Junction Elements, 57
 3.4 Causality Considerations for the Basic Elements, 63
CONTENTS

3.4.1 Causality for Basic 1-Ports, 64
3.4.2 Causality for Basic 2-Ports, 65
3.4.3 Causality for Basic 3-Ports, 66
3.5 Causality and Block Diagrams, 67
Reference, 71
Problems, 71

4 System Models

4.1 Electrical Systems, 78
 4.1.1 Electrical Circuits, 78
 4.1.2 Electrical Networks, 84
4.2 Mechanical Systems, 91
 4.2.1 Mechanics of Translation, 91
 4.2.2 Fixed-Axis Rotation, 100
 4.2.3 Plane Motion, 106
4.3 Hydraulic and Acoustic Circuits, 121
 4.3.1 Fluid Resistance, 122
 4.3.2 Fluid Capacitance, 125
 4.3.3 Fluid Inertia, 130
 4.3.4 Fluid Circuit Construction, 132
 4.3.5 An Acoustic Circuit Example, 135
4.4 Transducers and Multi-Energy-Domain Models, 136
 4.4.1 Transformer Transducers, 137
 4.4.2 Gyrator Transducers, 139
 4.4.3 Multi-Energy-Domain Models, 142
References, 144
Problems, 144

5 State-Space Equations and Automated Simulation

5.1 Standard Form for System Equations, 165
5.2 Augmenting the Bond Graph, 168
5.3 Basic Formulation and Reduction, 175
5.4 Extended Formulation Methods—Algebraic Loops, 183
 5.4.1 Extended Formulation Methods—Derivative Causality, 188
5.5 Output Variable Formulation, 196
5.6 Nonlinear and Automated Simulation, 198
 5.6.1 Nonlinear Simulation, 198
 5.6.2 Automated Simulation, 202
Reference, 207
Problems, 207
6 Analysis and Control of Linear Systems 218

6.1 Introduction, 218
6.2 Solution Techniques for Ordinary Differential Equations, 219
6.3 Free Response and Eigenvalues, 222
 6.3.1 A First-Order Example, 223
 6.3.2 Second-Order Systems, 225
 6.3.3 Example: The Undamped Oscillator, 230
 6.3.4 Example: The Damped Oscillator, 232
 6.3.5 The General Case, 236
6.4 Transfer Functions, 239
 6.4.1 The General Case for Transfer Functions, 241
6.5 Frequency Response, 244
 6.5.1 Example Transfer Functions and Frequency Responses, 249
 6.5.2 Block Diagrams, 255
6.6 Introduction to Automatic Control, 258
 6.6.1 Basic Control Actions, 259
 6.6.2 Root Locus Concept, 273
 6.6.3 General Control Considerations, 285
6.7 Summary, 310
References, 311
Problems, 311

7 Multiport Fields and Junction Structures 326

7.1 Energy-Storing Fields, 327
 7.1.1 C-Fields, 327
 7.1.2 Causal Considerations for C-Fields, 333
 7.1.3 I-Fields, 340
 7.1.4 Mixed Energy-Storing Fields, 348
7.2 Resistive Fields, 350
7.3 Modulated 2-Port Elements, 354
7.4 Junction Structures, 357
7.5 Multiport Transformers, 359
References, 364
Problems, 365

8 Transducers, Amplifiers, and Instruments 371

8.1 Power Transducers, 372
8.2 Energy-Storing Transducers, 380
8.3 Amplifiers and Instruments, 385
8.4 Bond Graphs and Block Diagrams for Controlled Systems, 392
References, 397
Problems, 397

9 Mechanical Systems with Nonlinear Geometry 411

9.1 Multidimensional Dynamics, 412
 9.1.1 Coordinate Transformations, 416
9.2 Kinematic Nonlinearities in Mechanical Dynamics, 420
 9.2.1 The Basic Modeling Procedure, 422
 9.2.2 Multibody Systems, 433
 9.2.3 Lagrangian or Hamiltonian IC-Field Representations, 440
9.3 Application to Vehicle Dynamics, 445
9.4 Summary, 452
References, 452
Problems, 453

10 Distributed-Parameter Systems 470

10.1 Simple Lumping Techniques for Distributed Systems, 471
 10.1.1 Longitudinal Motions of a Bar, 471
 10.1.2 Transverse Beam Motion, 476
10.2 Lumped Models of Continua through Separation of Variables, 482
 10.2.1 The Bar Revisited, 483
 10.2.2 Bernoulli–Euler Beam Revisited, 491
10.3 General Considerations of Finite-Mode Bond Graphs, 499
 10.3.1 How Many Modes Should Be Retained?, 499
 10.3.2 How to Include Damping, 503
 10.3.3 Causality Consideration for Modal Bond Graphs, 503
10.4 Assembling Overall System Models, 508
10.5 Summary, 512
References, 512
Problems, 512

11 Magnetic Circuits and Devices 519

11.1 Magnetic Effort and Flow Variables, 519
11.2 Magnetic Energy Storage and Loss, 524
11.3 Magnetic Circuit Elements, 528
11.4 Magnetomechanical Elements, 532
11.5 Device Models, 534
References, 543
Problems, 544
12 Thermofluid Systems 548

12.1 Pseudo-Bond Graphs for Heat Transfer, 548
12.2 Basic Thermodynamics in True Bond Graph Form, 551
12.3 True Bond Graphs for Heat Transfer, 558
 12.3.1 A Simple Example of a True Bond Graph Model, 561
 12.3.2 An Electrothermal Resistor, 563
12.4 Fluid Dynamic Systems Revisited, 565
 12.4.1 One-Dimensional Incompressible Flow, 569
 12.4.2 Representation of Compressibility Effects in True Bond Graphs, 573
 12.4.3 Inertial and Compressibility Effects in One-Dimensional Flow, 576
12.5 Pseudo-Bond Graphs for Compressible Gas Dynamics, 578
 12.5.1 The Thermodynamic Accumulator—A Pseudo-Bond Graph Element, 579
 12.5.2 The Thermodynamic Restrictor—A Pseudo-Bond Graph Element, 584
 12.5.3 Constructing Models with Accumulators and Restrictors, 587
 12.5.4 Summary, 590

References, 592
Problems, 592

13 Nonlinear System Simulation 600

13.1 Explicit First-Order Differential Equations, 601
13.2 Differential Algebraic Equations Caused by Algebraic Loops, 604
13.3 Implicit Equations Caused by Derivative Causality, 608
13.4 Automated Simulation of Dynamic Systems, 612
 13.4.1 Sorting of Equations, 613
 13.4.2 Implicit and Differential Algebraic Equation Solvers, 614
 13.4.3 Icon-Based Automated Simulation, 614
13.5 Example Nonlinear Simulation, 616
 13.5.1 Some Simulation Results, 620
13.6 Summary, 623

References, 624
Problems, 624

Appendix: Typical Material Property Values Useful in Modeling Mechanical, Acoustic, and Hydraulic Elements 630
This is the fifth edition of a textbook originally titled *System Dynamics: A Unified Approach*, which in subsequent editions acquired the title *System Dynamics: Modeling and Simulation of Mechatronic Systems*. As you can see, the subtitle has now expanded to be *Modeling, Simulation, and Control of Mechatronic Systems*.

The addition of the term *control* indicates the major change from previous editions. In older editions, the first six chapters of the book typically have been used as an undergraduate text and the last seven chapters have been used for more advanced courses. Now the latter part of Chapter Six can be used to introduce undergraduate students to a major use of mathematical models; namely, as a basis for the design control systems. In this case we are not trying to replace the many excellent books dealing with the design of automatic control systems. Rather we are trying to provide a contrasting approach to such books that often have a single chapter devoted to the construction of mathematical models from physical principles, while the rest of the book is devoted to discussing the dynamics of control systems given a model of the control system in the form of state equations, transfer functions, or frequency response functions. It is our contention that while the design of control systems is very important, the skills of modeling and computer simulation for a wide variety of physical systems are of fundamental importance even if an automatic control system is not involved.

Furthermore, we contend that the bond graph method is uniquely suited to the understanding of physical system dynamics. The basis of bond graphs lies in the study of energy storage and power flow in physical systems of almost any type. In this edition, we have tried to simplify the earlier chapters to focus on mechanical, electrical, and hydraulic systems that are relatively easy to model using bond graphs, leaving the more complex types of systems to the later chapters. It would be easy for an instructor to choose some topics of particular interest from these chapters to supplement the types of systems studied in the earlier part of the book if desired.