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Preface

With a simple processing setup, the crystal growth of physical vapor transport
(PVT) transforms the original starting source material into the final form of crystal
inside a closed ampoule. The vapor species are transported from the source at one
end of the ampoule to form the crystal at the other end. The driving force for the
transport is the pressure gradient between the source and the crystal ends created by
an imposed temperature difference. Hence, the PVT process can be treated as three
processes occurring in series:

(1) The corresponding vapor species sublime from the source material at higher
temperature,

(2) The vapor species transport through the vapor phase to the crystal site at lower
temperature, and

(3) The condensation of vapor species on the crystal surface for its growth.

Besides its simplicity, crystallization by PVT has several advantages over the
conventional melt growth. These advantages result mostly from (1) the lower
processing temperatures, (2) the purification process associated with PVT, and
(3) the improved surface morphology of the grown crystals. The high melting
temperatures of the wide bandgap materials make the melt growth process very
difficult to handle. For instance, in the Si–C binary system, the SiC compound melts
at 2830 °C into Si-rich liquid and C solid, i.e., there is not even a stoichiometric
melt of SiC to conduct melt growth at this extremely hot environment. The PVT
process enables crystal growth at unique and advantageous environments than the
melt growth would allow. The PVT process also acts as a purification process
because of the differences in the vapor pressures of the native elements and the
impurities. Additionally, most solid–vapor interfaces exhibit higher interfacial
morphological stability during growth because of their low atomic roughness.

On the other hand, the main disadvantage of vapor growth techniques, compared
to other growth techniques, is that the growth rates are low and inconsistent and the
grown crystals are small with variable single crystal yields. To achieve a reasonable
growth rate, an intrinsic requirement for the PVT process of multielements com-
pounds is that the partial pressure of each element needs to be comparable to each
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other and at least above the level of 10−4 atm under the growth conditions. This
requirement excludes the possible PVT growth of III–V compounds because the
equilibrium partial pressures of group III are usually orders of magnitude lower than
those of the group V elements. It also excludes the PVT growth of any II–VI
compounds consisting of oxygen and mercury due to their high pressures.

In this book, the PVT process will be focused on ZnSe-based materials, such as
ZnSe, Cr- and Fe-doped ZnSe and ZnSeTe, as well as other wide bandgap II–VI
compounds, such as CdTe, CdS, and ZnTe. The contents of the book are intended
for the professional crystal growers, either academic researchers or commercial
operators, by providing the details of the operating procedures and the theoretical
bases behind them. After a short Introduction, Chap. 2 will present the funda-
mentals of PVT process, including partial pressure measurements and
one-dimensional diffusion model for the transport of vapor species. The experi-
mental measurements of the vapor transport rate, i.e., mass flux, as well as the heat
treatments of the starting materials to maximize the mass flux for various material
systems will be discussed in Chap. 3. The detailed crystal growth procedures and
in situ real-time optical monitoring techniques will be given in Chap. 4. Chapters 5
and 6 will present the results of various characterization techniques, including
morphology of the grown crystals, structural crystalline quality, impurity distri-
bution, dopant levels, and optical properties. The measured results of thermal and
electrical properties and the effects of post-growth annealing will be included in
Chap. 7. The formulation and calculated results from two-dimensional and
three-dimensional numerical simulation on the vapor transport process of ZnSe will
be presented in Chap. 8.

Huntsville, USA Ching-Hua Su
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