Springer Tracts in Civil Engineering

Aiqun Li

Vibration Control for Building Structures

Theory and Applications

Springer Tracts in Civil Engineering

Series Editors

Giovanni Solari, Wind Engineering and Structural Dynamics Research Group, University of Genoa, Genova, Italy

Sheng-Hong Chen, School of Water Resources and Hydropower Engineering, Wuhan University, Wuhan, China

Marco di Prisco, Politecnico di Milano, Milano, Italy

Ioannis Vayas, Institute of Steel Structures, National Technical University of Athens, Athens, Greece

Springer Tracts in Civil Engineering (STCE) publishes the latest developments in Civil Engineering—quickly, informally and in top quality. The series scope includes monographs, professional books, graduate textbooks and edited volumes, as well as outstanding PhD theses. Its goal is to cover all the main branches of civil engineering, both theoretical and applied, including:

- Construction and Structural Mechanics
- Building Materials
- Concrete, Steel and Timber Structures
- Geotechnical Engineering
- Earthquake Engineering
- Coastal Engineering; Ocean and Offshore Engineering
- Hydraulics, Hydrology and Water Resources Engineering
- Environmental Engineering and Sustainability
- Structural Health and Monitoring
- Surveying and Geographical Information Systems
- Heating, Ventilation and Air Conditioning (HVAC)
- Transportation and Traffic
- Risk Analysis
- Safety and Security

Indexed by Scopus

To submit a proposal or request further information, please contact: Pierpaolo Riva at Pierpaolo.Riva@springer.com, or Li Shen at Li.Shen@springer.com

More information about this series at http://www.springer.com/series/15088

Aiqun Li

Vibration Control for Building Structures

Theory and Applications

Aiqun Li Beijing University of Civil Engineering and Architecture Beijing, China

ISSN 2366-259X ISSN 2366-2603 (electronic) Springer Tracts in Civil Engineering ISBN 978-3-030-40789-6 ISBN 978-3-030-40790-2 (eBook) https://doi.org/10.1007/978-3-030-40790-2

© Springer Nature Switzerland AG 2020

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

The author graduated from the Department of Civil Engineering, Southeast University of China, in December 1992, majored in structural engineering, and obtained the doctor's degree. Then, the author taught in Southeast University from 1993 to 2015, and now works in Beijing University of Civil Engineering and Architecture from 2015.

Since 1990, the author has paid attention to and entered the research field of structural vibration control, which has lasted for 30 years. In retrospect, the initial research only focused on the subject. With the deepening of the research, the questions that often linger in the author's mind include: how to scientifically recognize and describe the strong earthquakes and hurricanes; how to face the randomness and destructiveness of strong earthquakes and hurricanes; how to ensure the performance-based designs of building structure system and its resistances to earthquake and wind; and how to study appropriate high-performance vibration reduction and isolation technologies to ensure the building structure has higher and better disaster prevention ability.

According to the fortification goal of "no damage under small earthquakes and no collapse under large earthquakes," the houses under a strong earthquake are already "standing ruins." How to ensure that the houses on which people live are safe under the large earthquake and strong wind should be the common expectation of people in modern society.

The disaster investigation and experience of previous large earthquakes and gales show that earthquakes and gales are random and destructive. By improving the anti-seismic and anti-wind abilities of buildings, or expressed as, as long as buildings have the ability to resist large earthquakes and gales, buildings will certainly become a real "safe and secure beautiful home."

With the rapid development of the urbanization process of human society, the building structure has been developing toward the direction of higher height, larger span, and more complex structure. However, once a strong earthquake or hurricane occurs, whether these important buildings have the proper anti-vibration ability will test our managers, designers, and construction engineers. For the buildings located in high-intensity areas, buildings pursuing high-performance structures, hospital buildings, school buildings, lifeline buildings, no matter whether they are new or existing, the structural vibration reduction and isolation technology is presumably an important technical choice to make them have better seismic capacity.

This book is the part of the author's periodical academic achievements (1990–2019) in the research of structural vibration reduction control, including four parts: the basic principle of structural vibration reduction control, structural vibration reduction device, structural vibration reduction design method and structural vibration reduction reduction engineering practice.

The theory, method, technology, and application in this book can also be used as reference for other engineering structure vibration reduction research and practice.

The research work of the author has been greatly supported by the National Natural Science Foundation of China (59238160, 50038010, 59408012, 59978009, and 51438002), the Key Projects in the National Science and Technology Pillar Program (2006BAJ03A04), and the National Key Research and Development Program of China (2017YFC0703602).

Thanks to Dr. Chen Xin, Dr. Zhou Guangpan, and Dr. Deng Yang in the author's team for their important contributions to the publication of this book.

Thanks to Dr. Jia Junbo, alumnus of Southeast University and academician of Norwegian Academy of Engineering, for his important contribution to the publication of this book.

I would like to dedicate this book to my two respected teachers who have passed away: Prof. Ding Dajun of Southeast University, a famous expert of civil engineering, and Prof. Cheng Wenrang of Southeast University, a famous expert of high-rise building structure.

In the process of research and writing, the author has learned and referred to a large number of works at home and abroad. I would like to extend my sincere thanks and respect to the original author!

Beijing, China December 2019 Aiqun Li

Contents

2.4

1	Sum	nary		1
	1.1	Concer	ot and Principle of Structural Vibration Control	2
		1.1.1	Structure Damping Principle	3
		1.1.2	Structure Isolation Principle	4
	1.2	Classifi	ication and Basic Performance of Structural Vibration	
		l Technology	5	
	1.3	Develo	pment and Current Situation of Structural Vibration	
		Contro	l	6
	Refer	ences		9
Par	t I B	asic Pri	nciple of Structural Vibration Control	
2	Basic	Princip	les of Energy Dissipation and Vibration Control	13
	2.1	Passive	e Control.	13
		2.1.1	Motion Equation of SDOF System	13
		2.1.2	Commonly Used Passive Energy Dissipation	
			Dampers	17
		2.1.3	Motion Equation of Passive Vibration Absorbing	
			Structural System	17
	2.2	Active	and Semi-active Control	21
		2.2.1	Commonly Used Active and Semi-active Control	
			Strategies	21
		2.2.2	Motion Equations of Active and Semi-active	
			Vibration Absorbing Systems	23
		2.2.3	Structural State Equation	24
		2.2.4	Structural Active Control Algorithm	30
		2.2.5	Structural Semi-active Control Algorithm	38
	2.3	Intellig	ent Control	44

Hybrid Control

44

44

3	Bas	ic Princip	le of Frequency Modulation Vibration Control	47		
	3.1	FM Mass Vibration Control.		47		
		3.1.1	Motion Equation of FM Mass Vibration Control			
			System	47		
		3.1.2	Basic Characteristics of FM Mass			
			Vibration Control	49		
		3.1.3	Construction of FM Mass Vibration Control	55		
	3.2	FM Liquid Vibration Control.		56		
		3.2.1	Motion Equation of FM Liquid Vibration Control			
			System	56		
		3.2.2	Basic Characteristics of FM Liquid			
			Vibration Control	61		
	References 6					
4	Basic Principle of Structural Isolation			63		
	4.1	Motion	Equation of Isolated Structural System	63		
	4.2	Basic C	Characteristics of Isolated Structural System	65		
		4.2.1	Response Analysis of Isolated Structural System	65		
		4.2.2	Response Characteristics of Isolated Structural			
			System	67		
	4.3	Comme	only Used Isolation Devices for Building Structures	69		
		4.3.1	Rubber Isolation System	70		
		4.3.2	Sliding Isolation System	72		
		4.3.3	Hybrid Isolation System	73		
	Ref	erences		75		
Par	t II	Damping	g Devices of Building Structures			
5	Viso	cous Fluid	l Damper	79		
	5.1	Mecha	nism and Characteristics of Viscous Fluid Damper	79		

	J.1	Mechanism and Characteristics of viscous Fluid Damper			
		5.1.1	Types and Characteristics of Damping Medium	79	
		5.1.2	Energy Dissipation Mechanism of Viscous Fluid		
			Damper	85	
		5.1.3	Calculation Model of Viscous Fluid Damper	99	
5	5.2	Propert	ies and Improvement of Viscous Fluid Materials	100	
		5.2.1	Modification of Viscous Fluid Damping Materials	100	
		5.2.2	Material Property Test of Viscous Fluid	102	
		5.2.3	Test Results and Analysis	102	
5.	5.3	Researc	ch and Development of New Viscous Fluid Damper	108	
		5.3.1	Linear Viscous Fluid Damper	108	
		5.3.2	Nonlinear Viscous Fluid Damper	113	
		5.3.3	Other Viscous Fluid Damping Devices	117	

Contents

	5.4	Performance Test of Viscous Fluid Damper 1		
		5.4.1	Maximum Damping Force Test.	122
		5.4.2	Regularity Test of Damping Force.	123
		5.4.3	Test of Loading Frequency Related Performance	
			of Maximum Damping Force	123
		5.4.4	Test of Temperature Related Performance	
			of Maximum Damping Force	124
		5.4.5	Pressure Maintaining Inspection	125
		5.4.6	Fatigue Performance Test	125
	Refer	ences	·····	127
6	Visco	elastic I	Damper	129
-	6.1	Viscoe	lastic Damping Mechanism and Characteristics	129
		6.1.1	Types and Characteristics of Viscoelastic Materials	129
		6.1.2	Calculation Model of Viscoelastic Damper	131
	6.2	Propert	ies and Improvement of Viscoelastic Materials	138
	0.2	6.2.1	Inorganic Small Molecule Hybrid, Blending	100
		0.2.1	of Rubber and Plastic	138
		622	Long Chain Polymer Blending Method	146
	63	Researc	ch and Development of New Viscoelastic Damper	149
	0.5	631	Laminated Viscoelastic Damper	149
		632	Cylindrical Viscoelastic Damper	154
		633	5 + 4 Viscoelastic Damping Wall	158
	Refer	ences	S + + Viscolastic Damping Wait	160
7	Meta	l Damne	a r •	161
'	7 1	Mechai	nism and Characteristics of Metal Damping	161
	/.1	7 1 1	Basic Principle of Metal Damper	161
		712	Properties of Steel with Low Vield Point	163
		7.1.2	Type and Calculation Performance	105
		7.1.5	of Metal Damper	167
	7.2	Tensio	n Compression Type Metal Damper	173
	1.2	7 2 1	Working Mechanism of Buckling Proof Brace	173
		7.2.1	Pessarch and Development of New Ruckling	1/4
		1.2.2	Proof Support	177
	72	Shoor 7	Filoof Support.	1//
	1.5		Stress Machanism of Unconstrained	104
		7.5.1	Sheer Steel Dista	104
		722	Budding Proof Design of in Plane Sheer Viold Type	164
		1.3.2	Buckling Proof Design of In-Plane Shear Yield Type	100
		7 2 2	Energy Dissipation Steel Plate.	189
		1.3.5	Nain Performance Parameters of Buckling Prevention	10.4
		7 .2.4	Snear Energy Dissipation Plate	194
		1.3.4	Research and Development of New Shear Metal	004
			Damper	204