Wanming Zhai

Vehicle—Track Coupled Dynamics

Theory and Applications

Vehicle–Track Coupled Dynamics

Wanming Zhai

Vehicle–Track Coupled Dynamics

Theory and Applications

Wanming Zhai Train and Track Research Institute State Key Laboratory of Traction Power Southwest Jiaotong University Chengdu, China

ISBN 978-981-32-9282-6 ISBN 978-981-32-9283-3 (eBook) https://doi.org/10.1007/978-981-32-9283-3

Jointly published with Science Press

The print edition is not for sale in China. Customers from China please order the print book from: Science Press.

© Science Press and Springer Nature Singapore Pte Ltd. 2020

This work is subject to copyright. All rights are reserved by the Publishers, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publishers, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publishers nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd. The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore

Preface

Dynamic interaction between train and track is increasingly intensive with the rapid development of high-speed railways, heavy-haul railways, and urban rail transits, causing more critical and complex vibration problems. Higher train running speed would result in severer train and track interaction, bringing more prominent problems in terms of running safety and stability of the train moving on elastic railway track structures. It must ensure that the train has a good ride comfort when running at a high speed without overturn or derailment. Additionally, the greater the wheel-axle load of a vehicle, the stronger the dynamic effect of the vehicle on track structures, inducing more serious dynamic damage to railway tracks. This requires mitigation of the dynamic interaction between heavy-haul train and track. Obviously, seeking solutions to the abovementioned sophisticated dynamic interaction problems of the large-scale system just from the vehicle system or the track system itself is no longer sufficient. It is necessary to conduct dedicated and in-depth research on the dynamic interaction between rolling stock and track systems. Only with a deep and comprehensive understanding of the mechanism of vehicle-track dynamic interaction is it possible to implement reasonable approaches to minimize the dynamic wheel-rail interaction, to obtain optimal integrated designs of modern rolling stocks and track structures, and eventually to ensure safe, smooth, and efficient train operations. Owing to the fast development of computation technologies, it is realistic today to study and simulate such coupled dynamics problems by considering the vehicle system and track system as a large integrated system with interaction and interdependence. This is the original intention of the vehicle-track coupled dynamics theory discussed in this book.

The author proposed the concept of *Vehicle–Track Coupled Dynamics* for the first time in the late 1980s. In 1991, the author completed his doctoral thesis entitled *Vertical Vehicle–Track Coupled Dynamics*. In 1993, a research paper for investigating the vertical interaction between vehicle and track based on the vehicle–track coupled dynamics was published at the 13th Symposium of the International Association for Vehicle System Dynamics (IAVSD), and then was included in a supplement of the IAVSD journal *Vehicle System Dynamics (VSD)* in 1994. With the continuous funding from the National Natural Science Foundation of China

(NSFC), the National Outstanding Young Scientist Foundation of China (received by the author in 1995), the Ministry of Science and Technology of China (MOST), the China Railway (former China Ministry of Railway), railway industry companies, and others, the research group (including graduate students) led by the author carried out many follow-up research tasks, and published the first academic monograph in this research field entitled *Vehicle–Track Coupled Dynamics* (First edition, in Chinese) in 1997. Afterward, the second, third, and fourth editions of the monograph (in Chinese) were published in 2002, 2007, and 2015 respectively, which became the most fundamental reference books in the field of railway system dynamics and design of rolling stocks and track structures in China, especially for high-speed railways.

In recent years, with the great-leap-forward development of modern railway transportation, especially for high-speed railways, the vehicle-track coupled dynamics theory needs to address more demanding engineering requirements and many new emerging open problems. Supported by the NSFC Major Project (Grand No. 11790280), the NSFC Key Project (Grand No. 51735012), the Program of Introducing Talents of Discipline to Universities (111 Project) (Grant No. B16041) from the China Ministry of Education (MOE), the author led his group to extend the vehicle-track coupled dynamics theory through more elaborate theoretical analysis and more extensive investigations of field problems uncovered in practice. Meanwhile, worldwide research on this topic has also been extremely active and achieved much progress recently. The first English monograph re-edited from the author's Chinese monographs is published when the relevant field is undergoing rapid development in terms of theoretical research and engineering practices.

The writing of this book would not be possible without the support from various individuals and organizations. First, the author is most grateful for the continuous support from the NSFC, the MOST, the China Railway, the MOE, etc. during the past decades. The author also owes much gratitude to those who have participated in the amendment of this English monograph. They are Dr. Shengyang Zhu, Dr. Liang Ling, and Dr. Zaigang Chen from the author's group; Dr. Yunshi Zhao, Dr. Xiaoyun Liu, and Dr. Ilaria Grossoni from University of Huddersfield (UK), Dr. Guoying Tian from Xihua University (China). The author would like to thank the following scholars with special gratitude: Dr. Oing Wu and Dr. Tim Mcsweeney from Central Queensland University (Australia), Prof. Zili Li from Delft University of Technology (the Netherlands), Prof. Kelvin C. P. Wang from Oklahoma State University (USA), and Prof. Manicka Dhanasekar from Queensland University of Technology (Australia), for their extreme enthusiasm in proofreading this book. Some calculation examples performed by Dr. Liang Ling are also gratefully acknowledged. Finally, the author wants to thank his Ph.D. students, Mr. Yu Sun, Ms. Yu Guo, Mr. Jun Luo, Mr. Tao Zhang, and Ms. Mei Chen, for their assistance in carefully editing and supplying photographs, diagrams, and relevant information.

Preface

The author believes the publication of this English monograph on *Vehicle–Track Coupled Dynamics* will be conducive to both the investigation of railway engineering dynamics and the development of modern railway industry.

Chengdu, China December 2018 Wanming Zhai

Contents

1	Introduction					
	1.1	Background of Vehicle–Track Coupled Dynamics				
	1.2	Acade	mic Rationale of Vehicle–Track Coupled Dynamics	4		
	1.3	The Research Scope of Vehicle–Track Coupled Dynamics				
	1.4	Research Methodology of Vehicle–Track Coupled				
		Dynan	nics	11		
	Refe	rences .		14		
2	Vehicle–Track Coupled Dynamics Models					
	2.1	On Mo	odeling of Vehicle–Track Coupled System	17		
		2.1.1	Evolution of Wheel–Rail Dynamics Analysis			
			Model	17		
		2.1.2	Modeling of Track Structure	21		
		2.1.3	Modeling of Vehicle.	26		
		2.1.4	General Principles for Vehicle–Track Coupled			
			System Modeling	28		
	2.2	Vehicl	e-Track Vertically Coupled Dynamics Model	29		
		2.2.1	Physical Model	30		
		2.2.2	Equations of Motion	37		
	2.3 Vehicle–Track Spatially Coupled Dynamics Model		e-Track Spatially Coupled Dynamics Model	56		
		2.3.1	Physical Model	56		
		2.3.2	Equations of Motion	72		
		2.3.3	Dynamic Wheel–Rail Coupling Model	122		
	2.4	Train–	Track Spatially Coupled Dynamics Model	136		
		2.4.1	Basic Principle of Train–Track Dynamic			
			Interaction	136		
		2.4.2	Train–Track Spatially Coupled Dynamics Model	137		
	Refe	rences.	· · · · · · · · · · · · · · · · · · ·	145		

3	Excit	ation M	odels of Vehicle–Track Coupled System	151	
	3.1	Excitat	ion Input Method	151	
		3.1.1	Fixed-Point Method	152	
		3.1.2	Moving-Vehicle Method	153	
		3.1.3	Tracking-Window Method	153	
	3.2	Impact Excitation Models		156	
		3.2.1	Impact Model of Wheel Flat	156	
		3.2.2	Model of Rail Dislocation Joint	161	
		3.2.3	Model of Dipped Rail Joint	163	
		3.2.4	Impact Model of Turnout	163	
		3.2.5	Other Impulsive Excitation Models	166	
	3.3	Harmo	nic Excitation Models	167	
		3.3.1	Displacement Input Model of Harmonic Excitation	168	
		3.3.2	Input Method of Common Track Irregularities	175	
		3.3.3	Input Function of Periodic Harmonic Force	177	
	3.4	Excitat	ion Model of Track Dynamic Stiffness Irregularity	178	
		3.4.1	Stiffness Irregularity at Track Transition Sections	179	
		3.4.2	Track Stiffness Irregularity at Turnout Section	181	
		3.4.3	Modeling of Rail Infrastructure Defects	182	
	3.5	Excitat	ion Model of Random Track Irregularity	183	
		3.5.1	Track Irregularity PSDs of United States		
			of America	185	
		3.5.2	Track Irregularity PSDs of Germany	187	
		3.5.3	Track Irregularity PSDs of China	188	
		3.5.4	Comparison of Typical Track Irregularity PSDs	193	
		3.5.5	Numerical Simulation Method for Random Track		
			Irregularity Time-Domain Samples Transformed	100	
			from Track Irregularity PSDs	196	
	Refer	ences		201	
4	Num	erical M	lethod and Computer Simulation for Analysis		
	of Ve	hicle–T	rack Coupled Dynamics	203	
	4.1 Time		ntegration Methods for Solving Large-Scale Dynamic		
		Proble	ms	203	
	4.2	New S	New Simple Fast Explicit Time Integration Method: Zhai		
		Metho	d	205	
		4.2.1	Integration Scheme of Zhai Method	205	
		4.2.2	Stability of Zhai Method	206	
		4.2.3	Accuracy of Zhai Method	208	
		4.2.4	Numerical Dissipation and Dispersion	208	
		4.2.5	Numerical Examples for Verification	211	
	4.3	Applica	ation of Zhai Method to Analysis of Vehicle-Track		
		Couple	d Dynamics	214	

Contents

		4.3.1	Numerical Integration Procedure	215
		4.3.2	Determination of Time Step of Zhai Method	216
	4.4	On Son	he Key Issues in Solving Process of Vehicle–Track	
		Coupled	1 Dynamics	218
		4.4.1	Determination of Calculated Length of Track and	
			Mode Number of Rail	218
		4.4.2	Solving Technique for the Train–Track Coupled	
			Dynamics	219
	4.5	Comput	er Simulation of Vehicle–Track Coupled Dynamics	223
		4.5.1	Vehicle–Track Vertically Coupled Dynamics	
			Simulation	223
		4.5.2	Vehicle–Track Spatially Coupled Dynamics	
			Simulation	225
		4.5.3	Train–Track Spatially Coupled Dynamics	
			Simulation	225
	Refer	ences		228
_		_		
5	Field	Test on	Vehicle–Track Coupled System Dynamics	231
	5.1	Field Te	est Methods of Vehicle–Track Coupled System	
		Dynami	cs	231
		5.1.1	Field Test Methods of Vehicle Dynamics	232
		5.1.2	Field Test Methods of Track Dynamics	233
	5.2	Typical	Dynamics Tests of Vehicles Running on Tracks	237
		5.2.1	Dynamic Test for a Typical High-Speed Train	
			on Slab Track	237
		5.2.2	Dynamic Test for a Typical Freight Vehicle	
			on Ballasted Track	243
	5.3	Typical	Vehicle–Track Dynamic Interaction Tests	246
		5.3.1	Wheel-Rail Interaction Test with a High-Speed	
			Train on Qinshen Passenger Dedicated Line	246
		5.3.2	Track Dynamics Test with a 10,000-Tonne	
			Heavy-Haul Train on Daqin Line	251
		5.3.3	Wheel-Rail Interaction Test on a Small-Radius	
			Curve in Mountain Area Railway	253
	Refer	ences		258
6	Expe	rimental	Validation of Vehicle-Track Coupled Dynamics	
U I	Mode	els	vandation of ventele track coupled Dynamics	259
	6.1	Experin	nental Validation on the Vehicle–Track Vertically	237
	0.1	Coupled	Dynamics Model	259
		611	Comparison of Vehicle Vibrations Retween	23)
		0.1.1	Theoretical and Measured Results	260
		612	Comparison Between Theoretical and Measured	200
		0.1.2	Vibrations of Track Structure	261
				201