Joseph A. Gallian

CONTEMPORARY
 ABSTRACT ALGEBRA

Ninth Edition

Notations

(The number after the item indicates the page where the notation is defined.)

SET THEORY

SPECIAL SETS

FUNCTIONS
AND ARITHMETIC

$$
\cap_{i \in I} S_{i}
$$

$\cup_{i \in I} S_{i} \quad$ union of sets $S_{i}, i \in I$
[a] $\quad\{x \in S \mid x \sim a\}$, equivalence class of S containing $a, 18$
$|s|$ number of elements in the set of S
$Z \quad$ integers, additive groups of integers, ring of integers
Q rational numbers, field of rational numbers
$Q^{+} \quad$ multiplicative group of positive rational numbers
F^{*} set of nonzero elements of F
R real numbers, field of real numbers
$\mathbf{R}^{+} \quad$ multiplicative group of positive real numbers
C complex numbers
$f^{-1} \quad$ inverse of the function f
$t \mid s \quad t$ divides $s, 3$
$t+s \quad t$ does not divide $s, 3$
$\operatorname{gcd}(a, b) \quad$ greatest common divisor of the integers a and $b, 4$
$\operatorname{lcm}(a, b) \quad$ least common multiple of the integers a and $b, 6$
$|a+b| \quad \sqrt{a^{2}+b^{2}}, 13$
$\phi(a)$ image of a under $\phi, 20$
$\phi: A \rightarrow B \quad$ mapping of A to $B, 21$
$g f, \alpha \beta$ composite function, 21

ALGEBRAIC SYSTEMS

D_{4} group of symmetries of a square, dihedral group of order 8,33
D_{n} dihedral group of order $2 n, 34$
e identity element, 43
$Z_{n} \quad$ group $\{0,1, \ldots, n-1\}$ under addition modulo $n, 44$
$\operatorname{det} A$ the determinant of $A, 45$
$U(n) \quad$ group of units modulo n (that is, the set of integers less than n and relatively prime to n under multiplication modulo n), 46
$\mathbf{R}^{n} \quad\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \mid a_{1}, a_{2}, \ldots, a_{n} \in \mathbf{R}\right\}, 47$
$S L(2, F) \quad$ group of 2×2 matrices over F with determinant 1,47
$G L(2, F) \quad 2 \times 2$ matrices of nonzero determinants with coefficients from the field F (the general linear group), 48
$g^{-1} \quad$ multiplicative inverse of $g, 51$

- g additive inverse of $g, 51$
$G \mid$ order of the group $G, 60$
$|g| \quad$ order of the element $g, 60$
$H \leq G$ subgroup inclusion, 61
$H<G \quad$ subgroup $H \neq G, 61$
$\langle a\rangle \quad\left\{a^{n} \mid n \in Z\right\}$, cyclic group generated by $a, 65$
$Z(G) \quad\{a \in G \mid a x=x a$ for all x in $G\}$, the center of $G, 66$
$C(a) \quad\{g \in G \mid g a=a g\}$, the centralizer of a in $G, 68$
$\langle S\rangle \quad$ subgroup generated by the set $S, 71$
$C(H) \quad\{x \in G \mid x h=h x$ for all $h \in H\}$, the centralizer of $H, 71$
$\phi(n) \quad$ Euler phi function of $n, 83$
S_{n} group of one-to-one functions from $\{1,2, \ldots, n\}$ to itself, 95
$A_{n} \quad$ alternating group of degree $n, 95$
$G \approx \frac{n}{G} \quad G$ and \bar{G} are isomorphic, 121
$\phi_{a} \quad$ mapping given by $\phi_{a}(x)=a x a^{-1}$ for all $x, 128$
$\operatorname{Aut}(G) \quad \operatorname{group}$ of automorphisms of the group $G, 129$
$\operatorname{Inn}(G) \quad$ group of inner automorphisms of $G, 129$
$a H \quad\{a h \mid h \in H\}, 138$
$a H a^{-1} \quad\left\{a h a^{-1} \mid h \in H\right\}, 138$
$|G: H| \quad$ the index of H in $G, 142$
HK $\quad\{h k \mid h \in H, k \in K\}, 144$
$\operatorname{stab}_{G}(i) \quad\{\phi \in G \mid \phi(i)=i\}$, the stabilizer of i under the permutation group $G, 146$
$\operatorname{orb}_{G}(i) \quad\{\phi(i) \mid \phi \in G\}$, the orbit of i under the permutation group $G, 146$
$G_{1} \oplus G_{2} \oplus \cdots \oplus G_{n} \quad$ external direct product of groups $G_{1}, G_{2}, \ldots, G_{n}, 156$
$U_{k}(n) \quad\{x \in U(n) \mid x \bmod k=1\}, 160$
$H \triangleleft G \quad H$ is a normal subgroup of $G, 174$
G/H factor group, 176
$H \times K \quad$ internal direct product of H and $K, 183$
$H_{1} \times H_{2} \times \cdots \times H_{n} \quad$ internal direct product of $H_{1}, \ldots, H_{n}, 184$
$\operatorname{Ker} \phi \quad$ kernel of the homomorphism $\phi, 194$
$\phi^{-1}\left(g^{\prime}\right) \quad$ inverse image of g^{\prime} under $\phi, 196$
$\phi^{-1}(\bar{K}) \quad$ inverse image of \bar{K} under $\phi, 197$
$Z[x]$ ring of polynomials with integer coefficients, 228
$M_{2}(Z) \quad$ ring of all 2×2 matrices with integer entries, 228
$R_{1} \oplus R_{2} \oplus \cdots \oplus R_{n} \quad$ direct sum of rings, 229
$n Z$ ring of multiples of $n, 231$
$Z[i] \quad$ ring of Gaussian integers, 231
$U(R) \quad$ group of units of the ring $R, 233$
char $R \quad$ characteristic of $R, 240$
$\langle a\rangle$ principal ideal generated by $a, 250$
$\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle \quad$ ideal generated by $a_{1}, a_{2}, \ldots, a_{n}, 250$
R/A factor ring, 250
$A+B \quad$ sum of ideals A and $B, 256$
$A B$ product of ideals A and $B, 257$
$\operatorname{Ann}(A) \quad$ annihilator of $A, 258$
$N(A) \quad$ nil radical of $A, 258$
$F(x) \quad$ field of quotients of $F[x], 269$
$R[x] \quad$ ring of polynomials over $R, 276$
$\operatorname{deg} f(x) \quad$ degree of the polynomial, 278
$\Phi_{p}(x) \quad p$ th cyclotomic polynomial, 294
$M_{2}(Q) \quad$ ring of 2×2 matrices over $Q, 330$
$\left\langle v_{1}, v_{2}, \ldots, v_{n}\right\rangle \quad$ subspace spanned by $v_{1}, v_{2}, \ldots, v_{n}, 331$
$F\left(a_{1}, a_{2}, \ldots, a_{n}\right) \quad$ extension of F by $a_{1}, a_{2}, \ldots, a_{n}, 341$

$$
\begin{array}{rl}
f^{\prime}(x) & \text { the derivative of } f(x), 346 \\
{[E: F]} & \text { degree of } E \text { over } F, 356 \\
\operatorname{GF}\left(p^{n}\right) & \text { Galois field of order } p^{n}, 368 \\
\operatorname{GF}\left(p^{n}\right)^{*} & \text { nonzero elements of } \operatorname{GF}\left(p^{n}\right), 369 \\
\mathrm{cl}(a) & \left\{x a x^{-1} \mid x \in G\right\}, \text { the conjugacy class of } a, 387 \\
n_{p} & \text { the number of Sylow } p \text {-subgroups of a group, } 393 \\
W(S) & \text { set of all words from } S, 424 \\
\left\langle a_{1}, a_{2}, \ldots, a_{n} \mid w_{1}=w_{2}=\cdots=w_{t}\right\rangle & \text { group with generators } a_{1}, a_{2}, \ldots, a_{n} \text { and relations } w_{1} \\
& =w_{2}=\cdots=w_{t}, 426 \\
Q_{4} & \text { quarternions, 430 } \\
Q_{6} & \text { dicyclic group of order 12, 430 } \\
D_{\infty} & \text { infinite dihedral group, 431 } \\
\operatorname{Gix}(\phi) & \{i \in S \mid \phi(i)=i\}, \text { elements fixed by } \phi, 474 \\
\operatorname{Cay}(S: G) & \text { Cayley digraph of the group } G \text { with generating set } S, \\
& 482 \\
k *(a, b, \ldots, c) & \text { concatenation of } k \text { copies of }(a, b, \ldots, c), 490 \\
(n, k) & \text { linear code, } k \text {-dimensional subspace of } F^{n}, 508 \\
F^{n} & F \oplus F \oplus \cdots \oplus F, \text { direct product of } n \text { copies of the } \\
& \text { field } F, 508 \\
d(u, v) & \text { Hamming distance between vectors } u \text { and } v, 509 \\
\text { wt }(u) & \text { the number of nonzero components of the vector } u \\
& \text { (the Hamming weight of } u), 509 \\
\operatorname{Gal}(E / F) & \text { the automorphism group of } E \text { fixing } F, 531 \\
E_{H} & \text { fixed field of } H, 531 \\
\Phi_{n}(x) & n \text {th cyclotomic polynomial, } 548
\end{array}
$$

Contemporary Abstract Algebra

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Contemporary Abstract Algebra

NINTH EDITION

Joseph A. Gallian

University of Minnesota Duluth

CENGAGE

Learning

This is an electronic version of the print textbook. Due to electronic rights restrictions, some third party content may be suppressed. Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. The publisher reserves the right to remove content from this title at any time if subsequent rights restrictions require it. For valuable information on pricing, previous editions, changes to current editions, and alternate formats, please visit www.cengage.com/highered to search by ISBN\#, author, title, or keyword for materials in your areas of interest.

Important Notice: Media content referenced within the product description or the product text may not be available in the eBook version.

Contemporary Abstract Algebra, Ninth Edition
 Joseph A. Gallian

Product Director: Terry Boyle
Product Manager: Richard Stratton
Content Developer: Spencer Arritt
Product Assistant: Kathryn Schrumpf
Marketing Manager: Ana Albinson
Sr. Content Project Manager: Tanya Nigh
Art Director: Vernon Boes
Manufacturing Planner: Doug Bertke
Production Service and Compositor: Lumina Datamatics Inc.
Photo and Text Researcher: Lumina
Datamatics Inc.
Text Designer: Diane Beasley
Cover Designer: Terri Wright Design
Cover image: Complex Flows by Anne Burns
© 2017, 2013 Cengage Learning
WCN: 02-200-203
ALL RIGHTS RESERVED. No part of this work covered by the copyright herein may be reproduced, transmitted, stored, or used in any form or by any means graphic, electronic, or mechanical, including but not limited to photocopying, recording, scanning, digitizing, taping, Web distribution, information networks, or information storage and retrieval systems, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the publisher.

```
For product information and technology assistance, contact us at Cengage Learning Customer \& Sales Support, 1-800-354-9706
For permission to use material from this text or product, submit all requests online at www.cengage.com/permissions
Further permissions questions can be emailed to permissionrequest@cengage.com
```

Library of Congress Control Number: 2015954307

ISBN: 978-1-305-65796-0

Cengage Learning

20 Channel Center Street
Boston, MA 02210
USA
Cengage Learning is a leading provider of customized learning solutions with employees residing in nearly 40 different countries and sales in more than 125 countries around the world. Find your local representative at www.cengage.com.

Cengage Learning products are represented in Canada by Nelson Education, Ltd.

To learn more about Cengage Learning Solutions, visit www.cengage.com.

Purchase any of our products at your local college store or at our preferred online store www.cengagebrain.com.

Printed in the United States of America Print Number: 01 Print Year: 2015

In memory of my brother.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

