TRANSFORMERS AND INDUCTORS FOR POWER ELECTRONICS THEORY, DESIGN AND APPLICATIONS

W. G. HURLEY AND W. H. WÖLFLE

TRANSFORMERS AND INDUCTORS FOR POWER ELECTRONICS

TRANSFORMERS AND INDUCTORS FOR POWER ELECTRONICS THEORY, DESIGN AND APPLICATIONS

W. G. Hurley National University of Ireland, Galway, Ireland

W. H. Wölfle Convertec Ltd, Wexford Ireland

This edition first published 2013 © 2013 John Wiley & Sons Ltd.

Registered office

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as expressly permitted by law, without either the prior written permission of the Publisher, or authorization through payment of the appropriate photocopy fee to the Copyright Clearance Center.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The Publisher is not associated with any product or vendor mentioned in this book. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

MATLAB[®] is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks does not warrant the accuracy of the text or exercises in this book. This book's use or discussion of MATLAB[®] software or related products does not constitute endorsement or sponsorship by The MathWorks of a particular pedagogical approach or particular use of the MATLAB[®] software.

Library of Congress Cataloging-in-Publication Data Hurley, William G. Transformers and inductors for power electronics: theory, design and applications / W.G. Hurley, W.H. Wölfle. pages cm Includes bibliographical references and index. ISBN 978-1-119-95057-8 – ISBN 978-1-118-54464-8 – ISBN 978-1-118-54466-2– ISBN 978-1-118-54467-9 – ISBN 978-1-118-54468-6 1. Electric transformers–Design and construction. 2. Electric inductors–Design and construction. I. Wölfle, Werner H. II. Title. TK2551.H87 2013 621.31'4–dc23 2012039432

ISBN 978-1-119-95057-8

Set in 10/12pt Times-Roman by Thomson Digital, Noida, India

To Our Families

Contents

About	the Authoria	ors	xiii
Acknow	wledgeme	ents	XV
Foreword		xvii	
Preface	е		xix
Nomen	clature		xxiii
Chapte	er 1 In	troduction	1
1.1	Histori	cal Context	1
1.2	The La	ws of Electromagnetism	4
	1.2.1	Ampere's Magnetic Circuit Law	4
	1.2.2	Faraday's Law of Electromagnetic Induction	5
1.3		agnetic Materials	7
1.4	Losses	in Magnetic Components	10
	1.4.1	Copper Loss	10
	1.4.2	Hysteresis Loss	11
	1.4.3	Eddy Current Loss	13
	1.4.4	Steinmetz Equation for Core Loss	14
1.5	Magnet	tic Permeability	14
1.6	Magnetic Materials for Power Electronics		16
	1.6.1	Soft Magnetic Materials	17
	1.6.2	The Properties of some Magnetic Materials	19
1.7	Problems		21
	References		21
	Further	Reading	21
SECTI	ON I I	NDUCTORS	23
Chapte		ductance	25
2.1	0	tic Circuits	25
2.2		d Mutual Inductance	30
2.3	Energy	Stored in the Magnetic Field of an Inductor	34

2.3 Energy Stored in the Magnetic Field of an Inductor

	2.3.1	Why Use a Core?	35
	2.3.2	Distributed Gap	38
2.4	Self an	d Mutual Inductance of Circular Coils	39
	2.4.1	Circular Filaments	39
	2.4.2	Circular Coils	40
2.5	Fringir	ng Effects around the Air Gap	48
2.6	Proble		51
	Refere	nces	53
	Further	r Reading	54
Chapte	r3 In	iductor Design	55
3.1		esign Equations	55
	3.1.1	•	55
	3.1.2	Maximum Flux Density	55
	3.1.3	Winding Loss	56
	3.1.4	Optimum Effective Permeability	57
	3.1.5	Core Loss	58
	3.1.6	The Thermal Equation	58
	3.1.7	Current Density in the Windings	59
	3.1.8	Dimensional Analysis	61
3.2	The Design Methodology		61
3.3	Design Examples		64
	3.3.1	Example 3.1: Buck Converter with a Gapped Core	64
	3.3.2	Example 3.2: Forward Converter with a Toroidal Core	69
3.4	Multip	le Windings	74
	3.4.1	Example 3.3: Flyback Converter	75
3.5	Problems		84
	Refere	nces	89
	Further	r Reading	89

SECTION II TRANSFORMERS

93

Chapter 4 Transformers		95	
4.1	.1 Ideal Transformer		96
	4.1.1	No Load Conditions	97
	4.1.2	Load Conditions	98
	4.1.3	Dot Convention	99
	4.1.4	Reflected Impedance	100
	4.1.5	Summary	101
4.2	Practic	al Transformer	102
	4.2.1	Magnetizing Current and Core Loss	102
	4.2.2	Winding Resistance	105
	4.2.3	Magnetic Leakage	105
	4.2.4	Equivalent Circuit	107
4.3	Genera	al Transformer Equations	109

	4.3.1	The Voltage Equation	109
	4.3.2	The Power Equation	112
	4.3.3		113
	4.3.4	Core Loss	114
	4.3.5	Optimization	114
4.4	Power	1	116
4.5	Proble		121
	Referen		122
	Further	Reading	122
Chapte	er 5 Ti	ransformer Design	123
5.1	The De	esign Equations	124
	5.1.1	Current Density in the Windings	124
	5.1.2	Optimum Flux Density unlimited by Saturation	125
	5.1.3	Optimum Flux Density limited by Saturation	126
5.2	The De	esign Methodology	128
5.3	Design	Examples	129
	5.3.1	Example 5.1: Centre-Tapped Rectifier Transformer	129
	5.3.2	Example 5.2: Forward Converter	134
	5.3.3	Example 5.3: Push-Pull Converter	140
5.4	Transfo	ormer Insulation	146
	5.4.1	Insulation Principles	147
	5.4.2	Practical Implementation	147
5.5	Problei	ms	148
	Further	Reading	155
Chapte	er 6 Hi	igh Frequency Effects in the Windings	159
6.1	Skin E	ffect Factor	160
6.2	Proxim	ity Effect Factor	163
	6.2.1	AC Resistance in a Cylindrical Conductor	165
6.3	Proxim	ity Effect Factor for an Arbitrary Waveform	171
	6.3.1	The Optimum Thickness	174
6.4		ng Proximity Effects by Interleaving the Windings	182
6.5		e Inductance in Transformer Windings	184
6.6	Problei	ns	187
	Referen	nces	193
	Further	Reading	193
Chapte		igh Frequency Effects in the Core	197
7.1	•	Current Loss in Toroidal Cores	197
	7.1.1	Numerical Approximations	200
	7.1.2	Equivalent Core Inductance	201
	7.1.3	Equivalent Core Resistance	202
7.2	Core L		204
7.3	-	ex Permeability	209
7.4	Laminations		212

7.5	Problems		214
	Referen	nces	216
	Further	Reading	216
SECTI	ON III	ADVANCED TOPICS	219
Chapte	er 8 M	easurements	221
8.1		rement of Inductance	221
	8.1.1	Step Voltage Method	222
	8.1.2	Incremental Impedance Method	223
8.2	Measur	rement of the <i>B</i> - <i>H</i> Loop	225
8.3		rement of Losses in a Transformer	227
	8.3.1	Short-Circuit Test (Winding/Copper Loss)	228
	8.3.2	Open-Circuit Test (Core/Iron Loss)	229
	8.3.3	Core Loss at High Frequencies	232
	8.3.4	Leakage Impedance at High Frequencies	235
8.4	Capacit	tance in Transformer Windings	237
	8.4.1	Transformer Effective Capacitance	238
	8.4.2	Admittance in the Transformer Model	239
8.5	Problems		244
	References		245
	Further	Reading	245
Chapte	er 9 Pla	anar Magnetics	247
9.1	Inducta	ince Modelling	248
	9.1.1	Spiral Coil in Air	249
	9.1.2	Spiral Coil on a Ferromagnetic Substrate	253
	9.1.3	Spiral Coil in a Sandwich Structure	261
9.2		tion of Spiral Inductors	265
	9.2.1	PCB Magnetics	265
	9.2.2	Thick Film Devices	267
	9.2.3	LTCC Magnetics	270
	9.2.4	Thin Film Devices	271
	9.2.5	Summary	274
9.3	Problem		275
	Referen		298
	Further	Reading	299
Chapte		ariable Inductance	301
10.1		ed Core Inductor	303
10.2	U	ng Inductor	309
10.3	-	Air Gap Inductor	312
10.4	11		315
		Power Factor Correction	315
	10.4.2	Harmonic Control with Variable Inductance	317

Index		341
Appendix A		337
	Further Reading	335
	References	335
10.5	Problems	331
	10.4.4 Voltage Regulation	329
	10.4.3 Maximum Power Point Tracking	323