

Modern Lens Antennas for Communications Engineering

John Thornton · Kao-Cheng Huang

MODERN LENS ANTENNAS FOR COMMUNICATIONS ENGINEERING

IEEE Press 445 Hoes Lane Piscataway, NJ 08854

IEEE Press Editorial Board 2013

John Anderson, Editor in Chief

Linda Shafer	Saeid Nahavandi	George Zobrist	
George W. Arnold	David Jacobson	Tariq Samad	
Ekram Hossain	Mary Lanzerotti	Dmitry Goldgof	
Om P. Malik			

Kenneth Moore, Director of IEEE Book and Information Services (BIS)

MODERN LENS ANTENNAS FOR COMMUNICATIONS ENGINEERING

John Thornton

Kao-Cheng Huang

Cover Design: John Wiley & Sons, Inc. Cover Illustration: © simon2579/iStockphoto.

Copyright © 2013 by Institute of Electrical and Electronics Engineers. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data is available.

ISBN: 978-1-118-01065-5

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

CONTENTS

Pr	Preface		ix	
Acknowledgments			xi	
1	INTRODUCTION John Thornton and Kao-Cheng Huang			1
	1.1	Lens	2	
		1.1.1	The Microwave Lens	2
		1.1.2	Advantages of Lens Antennas	4
		1.1.3	Materials for Lenses	5
		1.1.4	Synthesis	6
	1.2 Feeds for Lens Antennas		8	
		1.2.1	Microstrip Feeds	8
		1.2.2	Horn Feeds	9
	 Luneburg and Spherical Lenses Quasi Optics and Lens Antennas Lens Antenna Design 			10
				14
				18
	1.6 Metamaterial Lens		naterial Lens	26
1.7 Planar Lens or Phase-Shifting Surface		30		
		1.7.1	Reflect Array	31
		1.7.2	Planar Lens or Lens Array	33
	1.8	Applic	cations	36
	1.9 Antenna Measurements		na Measurements	37
		1.9.1	Radiation Pattern Measurement	37
		1.9.2	Gain Measurement	38
		1.9.3	Polarization Measurement	38
		1.9.4	Anechoic Chambers and Ranges	38
		1.9.4	Anechoic Chambers and Ranges	

2	REVIEW OF ELECTROMAGNETIC WAVES Kao-Cheng Huang			49
	2.1	Maxw	49	
		2.1.1	Boundary Conditions	53
		2.1.2	Equivalence Theorem	55
	2.2	Anten	na Parameters	56
		2.2.1	Beam Solid Angle and Antenna Temperature	56
		2.2.2	Directivity and Gain	58
		2.2.3	Antenna Beamwidth	60
		2.2.4	Aperture of a Lens	62
		2.2.5	Phase Center	63
	2.3	Polari	zation	64
	2.4	Wave	Propagation in Metamaterials	71
3	POL	YROD	ANTENNAS	77
	Kao-Cheng Huang			
	3.1	Polyro	78	
	3.2	3.2 The Polyrod as a Radiator		83
		3.2.1	Tapered Polyrod Antenna	85
	3.3 Patch-Fed Circular Polyrod		90	
	3.4	Array of Polyrods		97
	3.5	Multil	105	
4	MIL Kao	LIMET -Cheng	ER WAVE LENS ANTENNAS Huang	113
	4.1	Millimeter Wave Characteristics		114
		4.1.1	Millimeter Wave Loss Factors	114
		4.1.2	Ray-Tracing Propagation	117
	4.2	Millin	neter Wave Substrate Lens for Imaging	121
	4.3	Millin	neter Wave and Submillimeter Wave Lens	126
		4.3.1	Extended Hemispherical Lens	128
		4.3.2	Off-Axis Extended Hemispherical Lens	133
		4.3.3	Submillimeter Wave Lens Antennas	
			for Communications	136
	4.4 Analysis of Millimeter Wave Spherical Lens		139	
	4.5	Waveguide-Fed Millimeter Wave Integrated Lens		141

5	LENS ANTENNAS FOR COMMUNICATIONS FROM HIGH-ALTITUDE PLATFORMS			
	5 1	Introd	uction	147
	5.2	The H	ligh-Altitude Platform Concept	147
	5.2	521	Spectrum Reuse Using HAPs	150
		522	Example Results: Cell Power and Interference	155
	53	Advar	tages of Lenses over Reflector Antennas	155
	5.5	531	Reflectors	160
		532	Lenses	161
		533	Commercial Lens Antennas	162
	54	Development of a Shaped Beam Low Sidelobe Lens Antenna with		102
	5.1	Asym	metric Pattern	164
		5.4.1	Primary Feed	165
		5.4.2	Symmetric 5° Beamwidth Antenna	166
		5.4.3	Asymmetric Beam	166
		5.4.4	Measurements	174
	5.5	Lens	Antenna Payload Model	177
	5.6	Multi	feed Lens	178
	5.7	Multi	ple Beam Spherical Lens Antennas for HAP Payload	181
6	SPH Johr	ERICA	L LENS ANTENNAS	187
	6.1	Introduction		187
	6.2	Spher	ical Lens Overview	192
	6.3	Analytical Methods		195
		6.3.1	Ray Tracing	195
		6.3.2	SWE	197
		6.3.3	Computational Method and Results	202
		6.3.4	Generic Feed Pattern	206
		6.3.5	Commercial Solvers	208
	6.4	Spherical Lens Materials and Fabrication Methods		210
		6.4.1	Machined Polymers	210
		6.4.2	Molding	212
		6.4.3	Polymer Foams	212
		6.4.4	PU Dielectric Loss	214
		6.4.5	Artificial Dielectrics	215

	6.5	Revisiting the Constant-Index Lens	215	
		6.5.1 A Practical, Patch-Fed Hemispherical Constant-Index Lens	219	
		6.5.2 Off-Axis Array-Fed Spherical Lens	219	
	6.6	Cross-Polarization Properties of Spherical Lenses	221	
7	HEMISPHERICAL LENS-REFLECTOR SCANNING ANTENNAS			
	7.1	Introduction		
	7.2	2 Candidate Scanning Antenna Technologies		
	7.3	Spherical and Hemispherical Lens Antenna		
	7.4	Hemispherical Lens Prototype		
	7.5	Evolution of a Two-Layer Stepped-Index Polymer Lens		
	7.6	A Hemispherical Lens-Reflector Antenna for Satellite		
		Communications		
		7.6.1 Requirements	239	
		7.6.2 Lens Analysis	240	
		7.6.3 Three-Layer Lens Geometry	240	
		7.6.4 Lens Fabrication and Performance	243	
		7.6.5 Mechanical Tracking System	245	
		7.6.6 Ground Plane Effects	249	
		7.6.7 Aperture Blockage in Scanning Lens Reflector	251	
	7.7	A Low-Index Lens Reflector for Aircraft Communications		
		(Contribution by D. Gray)	252	
Ab	out	the Authors	267	
Inc	law		207	
inc	lex		268	

PREFACE

The aim of this book is to present the modern design principles and analyses of lens antennas. It gives graduates and RF/microwave professionals the design insights in order to make full use of lens antennas. The reader might ask: Why is such a book considered necessary and timely? The reply we would bring to such an inquiry is that the topic has not been thoroughly publicized recently and so its importance has become somewhat underestimated. Furthermore, the work has brought about an opportunity to gather together the authors' contributions to several areas of research where lens antennas have been promoted. Foremost among these are communications applications, where of course antennas play a key role and where we will show why certain advantages accrue from the particular characteristics of lens antennas.

The major advantages of lens antennas are narrow beamwidth, high gain, low sidelobes and low noise temperature. Their structures can be more compact and weigh less than horn antennas and parabolic reflector antennas. Lens antennas, with their quasi-optical characteristics, also have low loss, particularly at near millimeter and submillimeter wavelengths where they have particular advantages. Beam shaping can be achieved by controlling the phase distribution across the lens aperture in a manner that can be more accurate and less costly than would be the case for a reflector. Such a shaped dielectric lens can be more economical to produce in small- to medium-scale production runs than other antenna types where certain niche applications are considered. In addition, spherical lens antennas have the benefit of no scan loss and wide bandwidth, with the option for multiple beams from a common aperture.

Modern Lens Antennas for Communications Engineering serves as an excellent tool for RF/microwave professionals (engineers, designers, and developers) and industries with microwave and millimeter wave research projects. For university students, this book requires a prerequisite course on antennas and electromagnetic waves, which covers propagation, reflection, and transmission of waves, waveguides, transmission lines, and some other antenna fundamental concepts. Such a course is usually followed by design projects. This book can be used as further study material in such design projects. Advanced students and researchers working in the field of modern communications will also find this book of interest. Included is a bibliography of current research literature and patents in this area.

Based on these credentials, this book systematically conducts advanced and up-todate treatment of lens antennas. It does not purport to present a far-reaching treatise on every aspect of lens antennas, but rather, following the introductory chapters, the