Molecular Communication

Tadashi Nakano, Andrew W. Eckford and Tokuko Haraguchi

CAMBRIDGE

Molecular Communication

This comprehensive guide, by pioneers in the field, brings together, for the first time, everything a new researcher, graduate student or industry practitioner needs to get started in molecular communication. Written with accessibility in mind, it requires little background knowledge, and provides a detailed introduction to the relevant aspects of biology and information theory, as well as coverage of practical systems.

The authors start by describing biological nanomachines, the basics of biological molecular communication, and the microorganisms that use it. They then proceed to engineered molecular communication and the molecular communication paradigm, with mathematical models of different types of molecular communication, and a description of the information and communication theory of molecular communication. Finally, the practical aspects of designing molecular communication systems are presented, including a review of the key applications.

Ideal for engineers and biologists looking to get up to speed on the current practice in this growing field.

Tadashi Nakano is an Associate Professor in the Graduate School of Engineering, Osaka University, Suita, Japan. He has authored or co-authored a series of papers on molecular communication, including the very first paper, published in 2005.

Andrew W. Eckford is an Associate Professor in the Department of Electrical Engineering and Computer Science at York University, Toronto, Canada. He has authored over 50 papers in the peer-reviewed literature, and received the Association of Professional Engineers of Ontario Gold Medal.

Tokuko Haraguchi is an Executive Researcher in the Advanced ICT Research Institute at the National Institute of Information and Communications Technology (NICT), Kobe, Japan, and a Professor with the Graduate School of Science and the Graduate School of Frontier Biosciences at Osaka University, Suita, Japan. She has authored 100 papers in biological research.

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

Published in the United States of America by Cambridge University Press, New York

Cambridge University Press in part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781107023086

© Cambridge University Press 2013

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2013

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data
Nakano, Tadashi, 1912–
Molecular communication / Tadashi Nakano, Andrew W. Eckford. pages cm
Includes bibliographical references and index.
ISBN 978-1-107-02308-6 (hardback)
Molecular communication (Telecommunication) 2. Molecules.
Nanotechnology. I. Title.
TK5013.57.N35 2013
620'.5-dc23 2013009571

ISBN 978-1-107-02308-6 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Molecular Communication

TADASHI NAKANO

Osaka University, Suita, Japan

ANDREW W. ECKFORD

York University, Toronto, Canada

TOKUKO HARAGUCHI

Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), Kobe, Japan

Contents

	Preface			page xi
1	Intro	1		
	1.1	Molecular communication: Why, what, and how?		1
		1.1.1	Why molecular communication?	1
		1.1.2	What uses molecular communication?	2
		1.1.3	How does it work? A quick introduction	3
	1.2	A histo	ory of molecular communication	6
		1.2.1	Early history and theoretical research	6
		1.2.2	More recent theoretical research	8
		1.2.3	Implementational aspects	9
		1.2.4	Contemporary research	9
	1.3	Applic	cations areas	11
		1.3.1	Biological engineering	11
		1.3.2	Medical and healthcare applications	13
		1.3.3	Industrial applications	14
		1.3.4	Environmental applications	14
		1.3.5	Information and communication technology	
			applications	15
	1.4	Ration	ale and organization of the book	15
	Refe	rences		16
2	Nature-made biological nanomachines			21
	2.1	Protein	n molecules	22
		2.1.1	Molecular structure	22
		2.1.2	Functions and roles	23
	2.2	DNA a	and RNA molecules	28
		2.2.1	Molecular structure	28
		2.2.2	Functions and roles	30
	2.3	Lipid 1	31	
		2.3.1	Molecular structure	31
		2.3.2	Functions and roles	33

	2.4	Whole cells Conclusion and summary	34	
	2.5	35		
	Refe	35		
3	Molecular communication in biological systems			
	3.1	Scales of molecular communication	36	
	3.2	Modes of molecular communication	37	
	3.3	Examples of molecular communication	38	
		3.3.1 Chemotactic signaling	40	
		3.3.2 Vesicular trafficking	41	
		3.3.3 Calcium signaling	42	
		3.3.4 Quorum sensing	44	
		3.3.5 Bacterial migration and conjugation	45	
		3.3.6 Morphogen signaling	46	
		3.3.7 Hormonal signaling	47	
		3.3.8 Neuronal signaling	47	
	3.4	Conclusion and summary	49	
	Refe	prences	50	
4	Mole	52		
	4.1	Molecular communication model	52	
	4.2	General characteristics	54	
		4.2.1 Transmission of information molecules	54	
		4.2.2 Information representation	56	
		4.2.3 Slow speed and limited range	56	
		4.2.4 Stochastic communication	57	
		4.2.5 Massive parallelization	57	
		4.2.6 Energy efficiency	58	
		4.2.7 Biocompatibility	58	
	4.3	Molecular communication network architecture	58	
		4.3.1 Physical layer	60	
		4.3.2 Link layer	61	
		4.3.3 Network layer	64	
		4.3.4 Upper layers and other issues	65	
	4.4	Conclusion and summary	67	
	Refe	prences	67	
5	Math	nematical modeling and simulation	71	
	5.1	Discrete diffusion and Brownian motion	71	
		5.1.1 Environmental assumptions	71	
		5.1.2 The Wiener process	72	
		5.1.3 Markov property	74	

vii

	5.1.4	Wiener process with drift	75
	5.1.5	Multi-dimensional Wiener processes	76
	5.1.6	Simulation	77
5.2	Molec	ular motors	78
5.3	First a	80	
	5.3.1	Definition and closed-form examples	80
	5.3.2	First arrival times in multiple dimensions	82
	5.3.3	From first arrival times to communication systems	82
5.4	Conce	ntration, mole fraction, and counting	83
	5.4.1	Small numbers of molecules: Counting and	
		inter-symbol interference	84
	5.4.2	Large numbers of molecules: Towards concentration	85
	5.4.3	Concentration: random and deterministic	87
	5.4.4	Concentration as a Gaussian random variable	89
	5.4.5	Concentration as a random process	90
	5.4.6	Discussion and communication example	92
5.5	Model	s for ligand–receptor systems	93
	5.5.1	Mathematical model of a ligand-receptor system	93
	5.5.2	Simulation	94
5.6	Conclu	usion and summary	95
Refer	rences		95
Comn	nunicatio	on and information theory of molecular communication	97
6.1	Theore	etical models for analysis of molecular communication	97
	6.1.1	Abstract physical layer communication model	97
	6.1.2	Ideal models	99
	6.1.3	Distinguishable molecules: The additive inverse	
		Gaussian noise channel	99
	6.1.4	Indistinguishable molecules	100
	6.1.5	Sequences in discrete time	102
6.2	Detect	ion and estimation in molecular communication	104
	6.2.1	Optimal detection and ML estimation	104
	6.2.2	Parameter estimation	106
	6.2.3	Optimal detection in the delay-selector channel	108
6.3	Inform	nation theory of molecular communication	109
	6.3.1	A brief introduction to information theory	109
	6.3.2	Capacity	110
	6.3.3	Calculating capacity: A simple example	112
	6.3.4	Towards the general problem	115
	6.3.5	Timing channels	116
6.4	Summ	ary and conclusion	120
Refer	ences		121

6

7	Design and engineering of molecular communication systems			122
	7.1	Proteir	n molecules	123
		7.1.1	Sender and receiver bio-nanomachines	123
		7.1.2	Information molecules	124
		7.1.3	Guide and transport molecules	125
	7.2	DNA 1	molecules	129
		7.2.1	Sender and receiver bio-nanomachines	129
		7.2.2	Information molecules	129
		7.2.3	Interface molecules	130
		7.2.4	Guide and transport molecules	131
	7.3	7.3 Liposomes		132
		7.3.1	Sender and receiver bio-nanomachines	133
		7.3.2	Interface molecules	134
		7.3.3	Guide molecules	135
	7.4	Biolog	gical cells	136
		7.4.1	Sender and receiver cells	136
		7.4.2	Guide cells	142
		7.4.3	Transport cells	144
	7.5	Conclu	usion and summary	147
	Refe	rences		147
8	Application areas of molecular communication			152
	8.1	Drug d	Drug delivery	
		8.1.1	Application scenarios	153
		8.1.2	Example: Cooperative drug delivery	153
		8.1.3	Example: Intracellular therapy	154
	8.2			156
		8.2.1	Application scenarios	156
		8.2.2	Example: Tissue structure formation	157
	8.3 Lab-		n-a-chip technology	158
		8.3.1	Application scenarios	160
		8.3.2	Example: Bio-inspired lab-on-a-chip	160
		8.3.3	Example: Smart dust biosensors	161
	8.4	Uncon	ventional computation	162
		8.4.1	Application scenarios	162
		8.4.2	Example: Reaction diffusion computation	162
		8.4.3	Example: Artificial neural networks	164
		8.4.4	Example: Combinatorial optimizers	165
	8.5	Lookii	ng forward: Conclusion and summary	166
	Refe	rences	166	