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Preface

Crystalline nanostructures confine electrons and quantize their energies, which
effect has led to the nomenclature quantum wells, quantum wires, and quantum
dots. They also confine lattice waves. In the case of acoustic modes propagating
in wave guides, this confinement is well understood by classical physics. This is
not the case for optical modes of vibration. In acoustic wave guides and, indeed,
in nanostructures, the normal modes of vibration are determined by the satisfac-
tion of the classical connection rules—continuation of particle displacement and
continuity of stress—at the boundaries. In order to satisfy these rules, a mode may
have to combine with a mode of different polarization to form a hybrid. In many
cases, a longitudinally polarized acoustic (LA) mode must liase with a transversely
polarized acoustic (TA) mode to form a viable normal mode of the system. Such
hybrid modes are commonplace in confining structures and have been known
from the end of the nineteenth century. This is not the case for optical modes.
Relative to acoustic modes, optical modes are but lately come, and their proper-
ties not as well defined or understood. This lacuna has been one of the motives
for writing this book.

An understanding of optical modes in room-temperature devices is of some
importance since they are, in polar structures, the principal source of electrical
resistance. Acoustic modes are also important in that respect, but the shared fre-
quencies between barrier and well make the confinement of acoustic modes at
once more intricate and more open to simplification. On the one hand, reflec-
tion and transmission at the boundary lead to a rich family of mode patterns that
include guided modes and interface waves. On the other hand, as regards the
electron–phonon interaction, it may be sufficient for many purposes to disregard
the intricacies entirely and treat the entire acoustic spectrum as bulk-like. This is
not an easily justifiable option for optical modes, given the disparity of frequency
between barrier and well that is commonly encountered. In that respect, optical
modes present a problem. What exactly are the mechanical connection rules? In
the case of polar modes, there are the usual electromagnetic boundary conditions
as well as those mysterious rules associated with the elasticity of the lattice. Can the
electromagnetic boundary conditions be sufficient? In other words, can the crystal
be regarded simply as a dielectric continuum? For those interested solely in estim-
ating the strength of the interaction between electrons and polar optical modes, the
dielectric continuum (DC) model provides a simpler alternative to hybrid theory,
an alternative that is not without some theoretical justification. Nevertheless, a
crystal is not a simple dielectric continuum. If the physics of nanostructures is
to see the semiconductor as a continuum, it must be a continuum that possesses
both elastic and dielectric properties, inhabited by hybrid lattice vibrations, both
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acoustic and optical, along with confined electrons. These constitute the essential
elements of the nanostructures and their interaction that will be described here.

Inevitably, such a description generates many equations, which many students
of nanostructure physics may find somewhat indigestible. As one who prefers
intuition to rigour (for better or worse), and who observes somewhat distantly
the purely formal mathematical approach with some admiration, I have much
sympathy with this attitude, but the student should know that the equations would
be much more indigestible were they to portray a truly rigorous reality that took
into account the natural anisotropy of semiconductor crystals. For simplicity, the
hybrid modes that are described here are creatures of purely isotropic solids, in
which modes are polarized purely longitudinally or purely transversely. Moreover,
they are all long-wavelength modes, which allow a clear distinction to be made
between optical and acoustic. Such approximations are acceptable for the Groups
IV and III-V cubic semiconductors, but not for the hexagonal II-VI materials,
which are highly anisotropic and, moreover, exhibit more than one optical mode.
The book has been written with cubic semiconductors very much in mind.

Some parts of this book were written during and after moving house from
Essex to Herefordshire (often to the despair of my wife). I suspect it has kept
me sane during what most think of as one of the most traumatic events of life.
Perhaps physics is to be recommended as a balm in troublesome times. My wife,
bless her, doubts it.

Pembridge 2016
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