

Hybrid Phonons in Nanostructures

B. K. RIDLEY

OXFORD

SERIES ON SEMICONDUCTOR SCIENCE AND TECHNOLOGY

Series Editors

R. J. Nicholas University of Oxford H. Kamimura University of Tokyo

Series on Semiconductor Science and Technology

- 1. M. Jaros: Physics and applications of semiconductor microstructures
- 2. V.N. Dobrovolsky and V. G. Litovchenko: Surface electronic transport phenomena in semiconductors
- 3. M.J. Kelly: Low-dimensional semiconductors
- 4. P.K. Basu: Theory of optical processes in semiconductors
- 5. N. Balkan: Hot electrons in semiconductors
- 6. B. Gil: Group III nitride semiconductor compounds: physics and applications
- 7. M. Sugawara: Plasma etching
- 8. M. Balkanski, R.F. Wallis: Semiconductor physics and applications
- 9. B. Gil: Low-dimensional nitride semiconductors
- 10. L. Challis: Electron-phonon interactions in low-dimensional structures
- 11. V. Ustinov, A. Zhukov, A. Egorov, N. Maleev: Quantum dot lasers
- 12. H. Spieler: Semiconductor detector systems
- 13. S. Maekawa: Concepts in spin electronics
- 14. S. D. Ganichev, W. Prettl: Intense terahertz excitation of semiconductors
- 15. N. Miura: Physics of semiconductors in high magnetic fields
- 16. A.V. Kavokin, J. J. Baumberg, G. Malpuech, F. P. Laussy: Microcavities
- 17. S. Maekawa, S. O. Valenzuela, E. Saitoh, T. Kimura: Spin current
- 18. B. Gil: III-nitride semiconductors and their modern devices
- 19. A. Toropov, T. Shubina: *Plasmonic Effects in Metal-Semiconductor Nanostructures*
- 20. B.K. Ridley: Hybrid Phonons in Nanostructures

Hybrid Phonons in Nanostructures First Edition

B. K. Ridley

Professor Emeritus of Physics, University of Essex, UK

OXFORD

UNIVERSITY PRESS

Great Clarendon Street, Oxford, OX2 6DP, United Kingdom

Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide. Oxford is a registered trade mark of Oxford University Press in the UK and in certain other countries

© B.K. Ridley 2017

The moral rights of the author have been asserted

First Edition published in 2017

Impression: 1

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, by licence or under terms agreed with the appropriate reprographics rights organization. Enquiries concerning reproduction outside the scope of the above should be sent to the Rights Department, Oxford University Press, at the address above

> You must not circulate this work in any other form and you must impose this same condition on any acquirer

Published in the United States of America by Oxford University Press 198 Madison Avenue, New York, NY 10016, United States of America

> British Library Cataloguing in Publication Data Data available

Library of Congress Control Number: 2016946809

ISBN 978-0-19-878836-2

Printed and bound by CPI Group (UK) Ltd, Croydon, CR0 4YY

Preface

Crystalline nanostructures confine electrons and quantize their energies, which effect has led to the nomenclature quantum wells, quantum wires, and quantum dots. They also confine lattice waves. In the case of acoustic modes propagating in wave guides, this confinement is well understood by classical physics. This is not the case for optical modes of vibration. In acoustic wave guides and, indeed, in nanostructures, the normal modes of vibration are determined by the satisfaction of the classical connection rules-continuation of particle displacement and continuity of stress—at the boundaries. In order to satisfy these rules, a mode may have to combine with a mode of different polarization to form a hybrid. In many cases, a longitudinally polarized acoustic (LA) mode must liase with a transversely polarized acoustic (TA) mode to form a viable normal mode of the system. Such hybrid modes are commonplace in confining structures and have been known from the end of the nineteenth century. This is not the case for optical modes. Relative to acoustic modes, optical modes are but lately come, and their properties not as well defined or understood. This lacuna has been one of the motives for writing this book.

An understanding of optical modes in room-temperature devices is of some importance since they are, in polar structures, the principal source of electrical resistance. Acoustic modes are also important in that respect, but the shared frequencies between barrier and well make the confinement of acoustic modes at once more intricate and more open to simplification. On the one hand, reflection and transmission at the boundary lead to a rich family of mode patterns that include guided modes and interface waves. On the other hand, as regards the electron-phonon interaction, it may be sufficient for many purposes to disregard the intricacies entirely and treat the entire acoustic spectrum as bulk-like. This is not an easily justifiable option for optical modes, given the disparity of frequency between barrier and well that is commonly encountered. In that respect, optical modes present a problem. What exactly are the mechanical connection rules? In the case of polar modes, there are the usual electromagnetic boundary conditions as well as those mysterious rules associated with the elasticity of the lattice. Can the electromagnetic boundary conditions be sufficient? In other words, can the crystal be regarded simply as a dielectric continuum? For those interested solely in estimating the strength of the interaction between electrons and polar optical modes, the dielectric continuum (DC) model provides a simpler alternative to hybrid theory, an alternative that is not without some theoretical justification. Nevertheless, a crystal is not a simple dielectric continuum. If the physics of nanostructures is to see the semiconductor as a continuum, it must be a continuum that possesses both elastic and dielectric properties, inhabited by hybrid lattice vibrations, both acoustic and optical, along with confined electrons. These constitute the essential elements of the nanostructures and their interaction that will be described here.

Inevitably, such a description generates many equations, which many students of nanostructure physics may find somewhat indigestible. As one who prefers intuition to rigour (for better or worse), and who observes somewhat distantly the purely formal mathematical approach with some admiration, I have much sympathy with this attitude, but the student should know that the equations would be much more indigestible were they to portray a truly rigorous reality that took into account the natural anisotropy of semiconductor crystals. For simplicity, the hybrid modes that are described here are creatures of purely isotropic solids, in which modes are polarized purely longitudinally or purely transversely. Moreover, they are all long-wavelength modes, which allow a clear distinction to be made between optical and acoustic. Such approximations are acceptable for the Groups IV and III-V cubic semiconductors, but not for the hexagonal II-VI materials, which are highly anisotropic and, moreover, exhibit more than one optical mode. The book has been written with cubic semiconductors very much in mind.

Some parts of this book were written during and after moving house from Essex to Herefordshire (often to the despair of my wife). I suspect it has kept me sane during what most think of as one of the most traumatic events of life. Perhaps physics is to be recommended as a balm in troublesome times. My wife, bless her, doubts it.

Pembridge 2016

Contents

Acknow	xi	
Introdu	1	
Prelude to Part 1		6
Dout 1	Basics	
Part 1	Basics	
1 Acou	istic Modes	15
1.1	Continuum Theory	15
1.2	Equation of Motion	16
1.3	Velocities	18
1.4	Isotropic Case	19
1.5	Inhomogenous Material	19
1.6	Quantization	21
2 Opti	cal Modes	24
2.1	Introduction	24
2.2	Microscopic Theory of the Diamond Lattice	25
2.3	Decoupled Acoustic and Optical Equations	29
2.4	Velocities	33
2.5	Isotropy	34
2.6	Inhomogeneous System	34
3 Pola	r Modes in Zinc Blende	37
3.1	Polar Elements	37
3.2	Polar Optical Modes	38
3.3	Interface Modes	41
3.4	Velocities	42
3.5	Inhomogenous Material	43
3.6	Piezoelectricity	43
4 Bou	ndary Conditions	46
4.1	Introduction	46
4.2	Acoustic Modes	46
4.3	Optical Modes	48
4.4	Electromagnetic Boundary Conditions	54
5 Scal	ar and Vector Fields	55
5.1	Introduction	55
5.2	The Helmholtz Equation	55

	5.3	Cylinder	56
	5.4	Sphere	57
Pai	rt 2	Hybrid Modes in Nanostructures	
		-	
6	Non	-Polar Slab	61
	6.1	Boundary Conditions	61
	6.2		62
	6.3	Optical Modes	67
7	Sing	le Heterostructure	69
	7.1	The Hybrid Model for Polar Optical Modes	69
	7.2	Remote Phonons	72
	7.3	Energy Normalization	73
	7.4	Reduced Boundary Condition	74
	7.5	Acoustic Hybrids	75
	7.6	Interface Acoustic Modes	80
8	Qua	ntum Well	83
	8.1	Triple Hybrid	83
	8.2	Energy Normalization	88
	8.3	Reduced Boundary Condition	88
	8.4	General Comments	89
	8.5	Barrier Modes	90
	8.6	Acoustic Modes	91
	8.7	Interface Acoustic Waves	95
	8.8	Guided Acoustic Waves	96
9	Qua	ntum Wire	97
	9.1	Introduction	97
	9.2	Cylindrical Coordinates	98
	9.3	Interface Modes	101
	9.4	Hybrid Modes in Polar Material	103
	9.5	Acoustic Stresses and Strains	106
	9.6	Free Surface	108
10	Qua	ntum Dot	110
	10.1	Introduction	110
	10.2	Spherical Coordinates	110
	10.3	Polar Double Hybrids	114
	10.4	Quantum Disc and Quantum Box	115

Part 3 Electron–Phonon Interaction

11	The Interaction between Electrons and Polar Optical Phonons in Nanostructures: General Remarks	119
	11.1 A Brief History11.2 Dispersion11.3 Coupled Modes and Hot Phonons	119 121 122
12	Electrons	124
	12.1 Confinement12.2 Scattering Rate	124 128
13	Scattering Rate in a Single Heterostructure	129
	13.1 Scattering Rate	129
14	Scattering Rate in a Quantum Well	135
	14.1 Preliminary14.2 Scattering Rate Associated with Quantum Well Modes14.3 Scattering Rate Associated with Barrier Modes14.4 General Remarks	135 135 139 140
15	Scattering Rate in Quantum Wires	142
	15.1 General Remarks15.2 Scattering Rate	142 142
16	The Electron–Phonon Interaction in a Quantum Dot	145
	16.1 Preamble16.2 Electron–Lattice Coupling16.3 The Exciton	145 145 148
17	Coupled Modes	153
	 17.1 Introduction 17.2 Long-Wavelength Modes 17.3 Beyond the Long-Wavelength Approximation 17.4 Screening in Quasi-2D Structures 17.5 Coupling to Hybrids 17.6 Quasi-1D Cylindrical Structures 17.7 Mobility 	153 153 156 163 170 171 172
18	Hot Phonon Lifetime	173
	18.1 Introduction18.2 Lifetime18.3 Thermal Conductivity	173 175 180
Re	eferences	185
	Index	