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Abstract: Suppose C is a nonempty closed convex nonexpansive retract of
real uniformly convex Banach space X with P a nonexpansive retraction. Let
T : C → X be a nonexpansive nonself-mapping of C with F (T ) := {x ∈ C :
Tx = x} 6= ∅. Suppose {xn} is generated iteratively by x1 ∈ C,

yn = P ((1− an − µn)xn + anTP ((1− βn)xn + βnTxn) + µnwn),
xn+1 = P ((1− bn − δn)xn + bnTP ((1− γn)yn + γnTyn) + δnvn), n ≥ 1,

where {an}, {bn}, {µn}, {δn}, {βn} and{γn} are appropriate sequences in [0, 1]
and {wn}, {vn} are bounded sequences in C. (1) If T is a completely continuous
nonexpansive nonself-mapping, then strong convergence of {xn} to some x∗ ∈
F (T ) is obtained; (2) If T satisfies condition, then strong convergence of {xn} to
some x∗ ∈ F (T ) is obtained; (3) If X is a uniformly convex Banach space which
satisfies Opial’s condition, then weak convergence of {xn} to some x∗ ∈ F (T ) is
proved.
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1 Introduction

Fixed point iteration processes for approximating fixed points of nonexpansive map-
pings in Banach spaces have been studied by various authors (see [3, 4, 6, 9, 10, 15, 17,
19]) using the Mann iteration process (see [6]) or the Ishikawa iteration process (see
[3, 4, 15, 19]). For nonexpansive nonself-mappings, some authors (see [19, 12, 14, 16])
have studied the strong and weak convergence theorems in Hilbert space or uniformly
convex Banach spaces. In 2000, Noor [7] introduced a three-step iterative scheme and
studied the approximate solutions of variational inclusion in Hilbert spaces. In 1998,
Takahashi and Kim [14] proved strong convergence of approximants to fixed points of
nonexpansive nonself-mappings in reflexive Banach spaces with a uniformly Gâteaux
differentiable norm. In the same year, Jung and Kim [5] proved the existence of a fixed
point for a nonexpansive nonself-mapping in a uniformly convex Banach space with
a uniformly Gâteaux differentiable norm. In [15], Tan and Xu introduced a modified
Ishikawa process to approximate fixed points of nonexpansive self-mappings defined
on nonempty closed convex bounded subsets of a uniformly convex Banach space X.
More preciesely, they proved the following theorem.
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Theorem 1.1. [15]. Let X be a uniformly convex Banach space which satisfies Opial’s
condition or has a Fréchet differentiable norm and C a nonempty closed convex bounded
subset of X. Let T : C → C be a nonexpansive mapping. Let {αn} and {βn} be
real sequences in [0, 1] such that

∑∞
n=1 αn(1 − αn) = ∞,

∑∞
n=1 βn(1 − βn) < ∞, and

lim supn→∞ βn < 1. Then the sequence {xn} generated from arbitrary x1 ∈ C by

xn+1 = (1− αn)xn + αnT ((1− βn)xn + βnTxn), n ≥ 1 (1.1)

converges weakly to some fixed point of T.

Suantai [13] defined a new three-step iterations which is an extension of Noor it-
erations and gave some weak and strong convergence theorems of such iterations for
asymptotically nonexpansive mappings in uniformly convex Banach spaces. Recently,
Shahzad [12] extended Tan and Xu results [15] to the case of nonexpansive nonself-
mapping in a uniformly convex Banach space.

Inspired and motivated by research going on in this area, we define and study a new
iterative scheme with errors for nonexpansive nonself-mapping. This scheme can be
viewed as an extension for the iterative scheme of Shahzad [12]. The scheme is defined
as follows:

Let X be a normed space, C a nonempty convex subset of X, P : X → C the
nonexpansive retraction of X onto C, and T : C → X a given mapping. Then for a
given x1 ∈ C, compute the sequences {xn} and {yn} by the iterative scheme:

yn = P ((1− an − µn)xn + anTP ((1− βn)xn + βnTxn) + µnwn),

xn+1 = P ((1− bn − δn)xn + bnTP ((1− γn)yn + γnTyn) + δnvn),
(1.2)

n ≥ 1, where {an}, {bn}, {µn}, {δn}, {βn} and {γn} are appropriate sequences in [0, 1]
and {wn}, {vn} are bounded sequences in C. If an = µn = δn ≡ 0, then (1.2) reduces
to the iterative scheme defined by Shahzad [12]:

x1 ∈ C, xn+1 = P ((1− bn)xn + bnTP ((1− γn)xn + γnTxn)) ∀n ≥ 1, (1.3)

where {bn} and {γn}, are real sequences in [ε, 1− ε] for some ε ∈ (0, 1).
If T : C → C and an = µn = δn ≡ 0, then (1.2) reduces to the iterative scheme

(1.1) defined by Tan and Xu [15].
The purpose of this paper is to construct an iteration scheme for approximating

a fixed point of nonexpansive nonself-mappings (when such a fixed point exists) and
to prove some strong and weak convergence theorems for such mappings in a uni-
formly convex Banach space. Our results extend and improve the corresponding ones
announced by Shahzad [12], Tan and Xu [15], and others.

Now, we recall the well known concepts and results.
Let X be a Banach space with dimension X ≥ 2. The modulus of X is the function

δX : (0, 2]→ [0, 1] defined by

δX(ε) = inf{1− ‖1

2
(x+ y)‖ : ‖x‖ = 1, ‖y‖ = 1, ε = ‖x− y‖}.
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Banach space X is uniformly convex if and only if δX(ε) > 0 for all ε ∈ (0, 2].
A subset C of X is said to be retract if there exists continuous mapping P : X → C

such that Px = x for all x ∈ C. Every closed convex subset of a uniformly convex
Banach space is a retract. A mapping P : X → X is said to be a retraction if P 2 = P.
If a mapping P is a retraction, then Pz = z for every z ∈ R(P ), range of P.

Recall that a Banach space X is said to satisfy Opial’s condition [8] if xn → x weak
as n→∞ and x 6= y imply that

lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

‖xn − y‖.

The mapping T : C → X with F (T ) 6= ∅ is said to satisfy condition (A) [11] if there
is a nondecreasing function f : [0,∞) → [0,∞) with f(0) = 0 and f(r) > 0 for all
r ∈ (0,∞) such that

‖x− Tx‖ ≥ f(d(x, F (T ))),

for all x ∈ C; (see [11]) for an example of nonexpansive mappings satisfying condition
(A).

In the sequel, the following lemmas are needed to prove our main results.

Lemma 1.2. [15] Let {an}, {bn} and {δn} be sequences of nonnegative real numbers
satisfying the inequality

an+1 ≤ (1 + δn)an + bn, ∀n = 1, 2, ...,

If
∑∞

n=1 δn <∞ and
∑∞

n=1 bn <∞, then
(1) limn→∞ an exists.
(2) limn→∞ an = 0 whenever lim infn→∞ an = 0.

Lemma 1.3. [17] Let p > 1, r > 0 be two fixed numbers. Then a Banach space X
is uniformly convex if and only if there exists a continuous, strictly increasing, and
convex function g : [0,∞)→ [0,∞), g(0) = 0 such that

‖λx+ (1− λ)y‖p ≤ λ‖x‖p + (1− λ)‖y‖p − wp(λ)g(‖x− y‖),

for all x, y in Br = {x ∈ X : ‖x‖ ≤ r}, λ ∈ [0, 1], where

wp(λ) = λ(1− λ)p + λp(1− λ).

Lemma 1.4. [2] Let X be a uniformly convex Banach space and Br = {x ∈ X : ‖x‖ ≤
r}, r > 0. Then there exists a continuous, strictly increasing, and convex function
g : [0,∞)→ [0,∞), g(0) = 0 such that

‖αx+ βy + γz‖2 ≤ α‖x‖2 + β‖y‖2 + γ‖z‖2 − αβg(‖x− y‖),

for all x, y, z ∈ Br, and all α, β, γ,∈ [0, 1] with α + β + γ = 1.
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Lemma 1.5. [1] Let X be a uniformly convex Banach space, C a nonempty closed
convex subset of X, and T : C → X be a nonexpansive mapping. Then I − T is
demiclosed at 0, i.e., if xn → x weak and (xn − Txn) → 0 strong, then x ∈ F (T ),
where F (T ) is the set of fixed point of T .

Lemma 1.6. [13] Let X be a Banach space which satisfies Opial’s condition and let
{xn} be a sequence in X. Let u, v ∈ X be such that limn→∞ ‖xn−u‖ and limn→∞ ‖xn−v‖
exist. If {xnk

} and {xmk
} are subsequences of {xn} which converge weakly to u and v,

respectively, then u = v.

2 Main Results

In this section, we prove weak and strong convergence theorems of the new iterative
scheme (1.2) for nonexpansive nonself-mapping in a uniformly convex Banach space.
In order to prove our main results, the following lemmas are needed.

Lemma 2.1. Let X be a uniformly convex Banach space, C a nonempty closed convex
nonexpansive retract of X with P as a nonexpansive retraction. Let T : C → X
be a nonexpansive nonself-mapping with F (T ) 6= ∅. Suppose that {an}, {bn}, {µn},
{δn}, {βn} and {γn} are real sequences in [0, 1] and {wn}, {vn} are bounded sequences
in C such that

∑∞
n=1 µn < ∞,

∑∞
n=1 δn < ∞. From an arbitrary x1 ∈ C, define the

sequences {xn} and {yn} by the recursion (1.2). Then limn→∞ ‖xn − x∗‖ exists for all
x∗ ∈ F (T ).

Proof. Let x∗ ∈ F (T ), and

M = max{sup
n≥1
‖wn − x∗‖, sup

n≥1
‖vn − x∗‖}.

For each n ≥ 1, using (1.2), we have

‖xn+1 − x∗‖ = ‖P ((1− bn − δn)xn + bnTP ((1− γn)yn + γnTyn) + δnvn)− x∗‖
= ‖P ((1− bn − δn)xn + bnTP ((1− γn)yn + γnTyn) + δnvn)− P (x∗)‖
≤ ‖(1− bn − δn)xn + bnTP ((1− γn)yn + γnTyn) + δnvn − x∗‖
= ‖(1− bn − δn)(xn − x∗) + bn(TP ((1− γn)yn

+γnTyn)− x∗) + δn(vn − x∗)‖
≤ (1− bn − δn)‖xn − x∗‖+ bn‖TP ((1− γn)yn

+γnTyn)− x∗‖+ δn‖vn − x∗‖
≤ (1− bn − δn)‖xn − x∗‖+ bn‖P ((1− γn)yn

+γnTyn)− x∗‖+ δn‖vn − x∗‖
≤ (1− bn − δn)‖xn − x∗‖+ bn‖(1− γn)yn

+γnTyn − x∗‖+ δn‖vn − x∗‖
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= (1− bn − δn)‖xn − x∗‖+ bn‖(1− γn)(yn − x∗)
+γn(Tyn − x∗)‖+ δn‖vn − x∗‖

≤ (1− bn − δn)‖xn − x∗‖+ bn((1− γn)‖yn − x∗‖
+γn‖yn − x∗‖) + δn‖vn − x∗‖

= (1− bn − δn)‖xn − x∗‖+ bn‖yn − x∗‖+ δn‖vn − x∗‖
≤ (1− bn − δn)‖xn − x∗‖+ bn‖yn − x∗‖+Mδn (2.1)

and

‖yn − x∗‖ = ‖P ((1− an − µn)xn + anTP ((1− βn)xn + βnTxn) + µnwn)− x∗‖
= ‖P ((1− an − µn)xn + anTP ((1− βn)xn + βnTxn) + µnwn)− P (x∗)‖
≤ ‖(1− an − µn)xn + anTP ((1− βn)xn + βnTxn) + µnwn − x∗‖
= ‖(1− an − µn)(xn − x∗) + an(TP ((1− βn)xn

+βnTxn)− x∗) + µn(wn − x∗)‖
≤ (1− an − µn)‖xn − x∗‖+ an‖TP ((1− βn)xn

+βnTxn)− x∗‖+ µn‖wn − x∗‖
≤ (1− an − µn)‖xn − x∗‖+ an‖P ((1− βn)xn

+βnTxn)− x∗‖+ µn‖wn − x∗‖
≤ (1− an − µn)‖xn − x∗‖+ an‖(1− βn)xn

+βnTxn − x∗‖+ µn‖wn − x∗‖
= (1− an − µn)‖xn − x∗‖+ an‖(1− βn)(xn − x∗)

+βn(Txn − x∗)‖+ µn‖wn − x∗‖
≤ (1− an − µn)‖xn − x∗‖+ an(1− βn)‖xn − x∗‖

+anβn‖xn − x∗‖+ µn‖wn − x∗‖
= (1− an − µn)‖xn − x∗‖+ an‖xn − x∗‖+ µn‖wn − x∗‖
= (1− µn)‖xn − x∗‖+ µn‖wn − x∗‖
≤ ‖xn − x∗‖+Mµn. (2.2)

Using (2.1) and (2.2), we have

‖xn+1 − x∗‖ ≤ (1− bn − δn)‖xn − x∗‖+ bn(‖xn − x∗‖+Mµn) +Mδn

= (1− bn − δn)‖xn − x∗‖+ bn‖xn − x∗‖+Mbnµn +Mδn

= (1− δn)‖xn − x∗‖+Mbnµn +Mδn

≤ ‖xn − x∗‖+ kn(1), (2.3)

where kn(1) = Mbnµn +Mδn.

Since
∑∞

n=1 µn <∞ and
∑∞

n=1 δn <∞, we have
∑∞

n=1 k
n
(1) <∞. We obtained from

(2.3) and Lemma 1.2 that limn→∞ ‖xn − x∗‖ exists. This completes the proof. 2
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Lemma 2.2. Let X be a uniformly convex Banach space, C a nonempty closed convex
nonexpansive retract of X with P as a nonexpansive retraction. Let T : C → X
be a nonexpansive nonself-mapping with F (T ) 6= ∅. Suppose that {an}, {bn}, {µn},
{δn}, {βn} and {γn} are real sequences in [0, 1] and {wn}, {vn} are bounded sequences in
C such that

∑∞
n=1 µn <∞,

∑∞
n=1 δn <∞, 0 < lim infn→∞ bn, and 0 < lim infn→∞ βn <

lim supn→∞ βn < 1. From an arbitrary x1 ∈ C, define the sequences {xn} and {yn} by
the recursion (1.2). Then limn→∞ ‖Txn − xn‖ = 0.

Proof. Let x∗ ∈ F (T ). Then, by Lemma 2.1, limn→∞ ‖xn−x∗‖ exists. Let limn→∞ ‖xn−
x∗‖ = r. If r = 0, then by the continuity of T the conclusion follows. Now suppose
r > 0. We claim

lim
n→∞

‖Txn − xn‖ = 0.

Set qn = P ((1 − βn)xn + βnTxn) and sn = P ((1 − γn)yn + γnTyn). Since {xn} is
bounded, there exists R > 0 such that xn − x∗, yn − x∗ ∈ BR(0) for all n ≥ 1. Using
Lemma 1.3, Lemma 1.4 and T is a nonexpansive, we have

‖xn+1 − x∗‖2 = ‖P ((1− bn − δn)xn + bnTP ((1− γn)yn + γnTyn) + δnvn)− x∗‖2

= ‖P ((1− bn − δn)xn + bnTsn + δnvn)− x∗‖2

≤ ‖(1− bn − δn)xn + bnTsn + δnvn − x∗‖2

= ‖(1− bn − δn)(xn − x∗) + bn(Tsn − x∗) + δn(vn − x∗)‖2

≤ (1− bn − δn)‖xn − x∗‖2 + bn‖Tsn − x∗‖2 + δn‖vn − x∗‖2

−(1− bn − δn)bng(‖Tsn − xn‖)
≤ (1− bn − δn)‖xn − x∗‖2 + bn‖Tsn − x∗‖2 +M2δn, (2.4)

‖Tsn − x∗‖2 = ‖TP ((1− γn)yn + γnTyn)− x∗‖2

≤ ‖P ((1− γn)yn + γnTyn)− x∗‖2

≤ ‖(1− γn)yn + γnTyn − x∗‖2

≤ ‖(1− γn)(yn − x∗) + γn(Tyn − x∗)‖2

≤ (1− γn)‖yn − x∗‖2 + γn‖Tyn − x∗‖2

−W2(γn)g(‖Tyn − yn‖)
≤ ‖yn − x∗‖2 −W2(γn)g(‖Tyn − yn‖)
≤ ‖yn − x∗‖2, (2.5)

‖yn − x∗‖2 = ‖P ((1− an − µn)xn + anTP ((1− βn)xn + βnTxn) + µnwn)− x∗‖2

= ‖P ((1− an − µn)xn + anTqn + µnwn)− x∗‖2

≤ ‖(1− an − µn)xn + anTqn + µnwn − x∗‖2

= ‖(1− an − µn)(xn − x∗) + an(Tqn − x∗) + µn(wn − x∗)‖2

≤ (1− an − µn)‖xn − x∗‖2 + an‖Tqn − x∗‖2 + µn‖wn − x∗‖2

−an(1− an − µn)g(‖Tqn − xn‖)
≤ (1− an − µn)‖xn − x∗‖2 + ‖Tqn − x∗‖2 +M2µn, (2.6)
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and

‖Tqn − x∗‖2 = ‖TP ((1− βn)xn + βnTxn)− x∗‖2

≤ ‖P ((1− βn)xn + βnTxn)− x∗‖2

≤ ‖(1− βn)(xn − x∗) + βn(Txn − x∗)‖2

≤ (1− βn)‖xn − x∗‖2 + βn‖Txn − x∗‖2

−W2(βn)g(‖Txn − xn‖)
≤ ‖xn − x∗‖2 −W2(βn)g(‖Txn − xn‖). (2.7)

By using (2.4), (2.5), (2.6) and (2.7), we have

‖xn+1 − x∗‖2 ≤ (1− bn − δn)‖xn − x∗‖2 + bn‖Tsn − x∗‖2 + δnM
2

≤ (1− bn − δn)‖xn − x∗‖2 + bn‖yn − x∗‖2 + δnM
2

≤ (1− bn − δn)‖xn − x∗‖2 + bn((1− an − µn)‖xn − x∗‖2

+‖Tqn − x∗‖2 +M2µn) +M2δn

≤ (1− bn − δn)‖xn − x∗‖2 + bn((1− an − µn)‖xn − x∗‖2

+(‖xn − x∗‖2 −W2(βn)g(‖Txn − xn‖)) +M2µn) +M2δn

≤ (1− bn − δn)‖xn − x∗‖2 + bn((1− an − µn)‖xn − x∗‖2

+‖xn − x∗‖2 −W2(βn)g(‖Txn − xn‖) +M2µn) +M2δn

≤ (1− bn − δn)‖xn − x∗‖2 + bn(‖xn − x∗‖2

−W2(βn)g(‖Txn − xn‖) +M2µn) +M2δn

≤ ‖xn − x∗‖2 − bnW2(βn)g(‖Txn − xn‖)
+M2µn +M2δn

= ‖xn − x∗‖2 − bnW2(βn)g(‖Txn − xn‖) + kn(2)

= ‖xn − x∗‖2 − bnβn(1− βn)g(‖Txn − xn‖) + kn(2), (2.8)

where kn(2) = M2µn+M2δn. Since
∑∞

n=1 µn <∞ and
∑∞

n=1 δn <∞, we have
∑∞

n=1 k
n
(2) <

∞. Since 0 < lim infn→∞ bn and 0 < lim infn→∞ βn < lim supn→∞ βn < 1, there exists
n0 ∈ N and η1, η2, η3 ∈ (0, 1) such that 0 < η1 < bn and 0 < η2 < βn < η3 < 1 for all
n ≥ n0. It follows from (2.8) that

η1η2(1− η3)g(‖Txn − xn‖) ≤ (‖xn − x∗‖2 − ‖xn+1 − x∗‖2) + kn(2),

for all n ≥ n0. Applying for m ≥ n0, we have

η1η2(1− η3)
m∑

n=n0

g(‖Txn − xn‖) ≤
m∑

n=n0

(‖xn − x∗‖2 − ‖xn+1 − x∗‖2) +
m∑

n=n0

kn(2)

= ‖xn0 − x∗‖2 +
m∑

n=n0

kn(2).
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Since
∑∞

n=1 k
n
(2) < ∞, by letting m → ∞ we get

∑∞
n=1 g(‖Txn − xn‖) < ∞, and

therefore limn→∞ g(‖Txn − xn‖) = 0. Since g is strictly increasing and continuous at
0 with g(0) = 0, it follows that limn→∞ ‖Txn − xn‖ = 0. This completes the proof. 2

Theorem 2.3. Let X be a uniformly convex Banach space, C a nonempty closed
convex nonexpansive retract of X with P as a nonexpansive retraction, and T : C → X
a completely continuous nonexpansive nonself-mapping with F (T ) 6= ∅. Suppose that
{an}, {bn}, {µn}, {δn}, {βn} and {γn} are real sequences in [0, 1] and {wn}, {vn} are
bounded sequences in C such that

∑∞
n=1 µn <∞,

∑∞
n=1 δn <∞, 0 < lim infn→∞ bn, and

0 < lim infn→∞ βn < lim supn→∞ βn < 1. Then the sequences {xn} and {yn} defined by
the iterative scheme (1.2) converge strongly to a fixed point of T.

Proof. By Lemma 2.2, we have

lim
n→∞

‖Txn − xn‖ = 0. (2.9)

Since T is completely continuous and {xn} ⊆ C is bounded, there exists a subse-
quence {xnk

} of {xn} such that {Txnk
} converges. Therefore from (2.9), {xnk

} con-
verges. Let q = limk→∞ xnk

. By the continuity of T and (2.9) we have that Tq = q, so q
is a fixed point of T . By Lemma 1.2,limn→∞ ‖xn−q‖ exists. Then limk→∞ ‖xnk

−q‖ = 0.
Thus limn→∞ ‖xn − q‖ = 0. Using (1.2), we have

‖yn − xn‖ = ‖P ((1− an − µn)xn + anTP ((1− βn)xn + βnTxn) + µnwn)− xn‖
≤ ‖(1− an − µn)xn + anTP ((1− βn)xn + βnTxn) + µnwn − xn‖
= ‖an(TP ((1− βn)xn + βnTxn)− xn) + µn(wn − xn)‖
= ‖an(TP ((1− βn)xn + βnTxn)− Txn + Txn − xn) + µn(wn − xn)‖
≤ an‖TP ((1− βn)xn + βnTxn)− Txn + Txn − xn‖+ µn‖wn − xn‖
≤ an‖TP ((1− βn)xn + βnTxn)− Txn‖+ an‖Txn − xn‖+ µn‖wn − xn‖
≤ an‖P ((1− βn)xn + βnTxn)− xn‖+ an‖Txn − xn‖+ µn‖wn − xn‖
≤ an‖(1− βn)xn + βnTxn − xn‖+ an‖Txn − xn‖+ µn‖wn − xn‖
≤ anβn‖Txn − xn‖+ an‖Txn − xn‖+ µn‖wn − xn‖ → 0 as n→∞.

It follows that limn→∞ ‖yn − q‖ = 0. This completes the proof. �
The following result gives a strong convergence theorem for nonexpansive nonself-

mapping in a uniformly convex Banach space satisfying condition(A).

Theorem 2.4. Let X be a uniformly convex Banach space, C a nonempty closed
convex nonexpansive retract of X with P as a nonexpansive retraction, and T : C →
X a nonexpansive nonself-mapping with F (T ) 6= ∅. Suppose that {an}, {bn}, {µn},
{δn}, {βn} and {γn} are real sequences in [0, 1] and {wn}, {vn} are bounded sequences in
C such that

∑∞
n=1 µn <∞,

∑∞
n=1 δn <∞, 0 < lim infn→∞ bn, and 0 < lim infn→∞ βn <

lim supn→∞ βn < 1. Suppose that T satisfies condition (A). Then the sequences {xn}
and {yn} defined by the iterative scheme (1.2) converge strongly to a fixed point of T.
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Proof. Let x∗ ∈ F (T ). Then, as in Lemma 2.1, {xn} is bounded, limn→∞ ‖xn − x∗‖
exists and

‖xn+1 − q‖ ≤ ‖xn − x∗‖+ kn(1),

where
∑∞

n=1 k
n
(1) < ∞ for all n ≥ 1. This implies that d(xn+1, F (T )) ≤ d(xn, F (T )) +

kn(1) and so, by Lemma 1.2, limn→∞ d(xn, F (T )) exists. Also, by Lemma 2.2, limn→∞

‖xn−Txn‖ = 0. Since T satisfies condition, we conclude that limn→∞ d(xn, F (T )) = 0.
Next we show that {xn} is a Cauchy sequence.

Since limn→∞ d(xn, F (T )) = 0 and
∑∞

n=1 k
n
(1) < ∞, given any ε < 0, there exists a

natural number n0 such that d(xn, F (T )) < ε
4

and
∑n

i=n0
ki(1) <

ε
2

for all n ≥ n0. So we

can find y∗ ∈ F (T ) such that ‖xn0 − y∗‖ < ε
4
. For n ≥ n0 and m ≥ 1, we have

‖xn+m − xn‖ = ‖xn+m − y∗‖+ ‖xn − y∗‖

≤ ‖xn0 − y∗‖+ ‖xn0 − y∗‖+
n∑

i=n0

ki(1)

<
ε

4
+
ε

4
+
ε

2
= ε.

This shows that {xn} is a Cauchy sequence and so is convergent since X is complete.
Let limn→∞ xn = u. Then d(u, F (T )) = 0. It follows that u ∈ F (T ). As in the proof of
Theorem 2.3, we have

lim
n→∞

‖yn − xn‖ = 0,

it follows that limn→∞ yn = u. This completes the proof. 2

If an = µn = δn ≡ 0, then the iterative scheme (1.2) reduces to that of (1.3) and
the following result is directly obtained by Theorem 2.4.

Theorem 2.5. (Shahzad [12] Theorem 3.6, p.1037). Let X be a real uniformly convex
Banach space and C a nonempty closed convex subset of X which is also a nonexpansive
retract of X. Let T : C → X be a nonexpansive mapping with F (T ) 6= ∅. Let {αn} and
{βn} be sequences in [ε, 1− ε] for some ε ∈ (0, 1). From an arbitrary x1 ∈ C, define the
sequence {xn} by the recursion (1.3). Suppose T satisfies condition (A). Then {xn}
converges strongly to some fixed point of T.

In the next result, we prove the weak convergence of the new iterative scheme
(1.2) for nonexpansive nonself-mappings in a uniformly convex Banach space satisfying
Opial’s condition.

Theorem 2.6. Let X be a uniformly convex Banach space which satisfies Opial’s con-
dition, C a nonempty closed convex nonexpansive retract of X with P as a nonexpansive
retraction. Let T : C → X be a nonexpansive mapping with F (T ) 6= ∅. Suppose that
{an}, {bn}, {µn}, {δn}, {βn} and {γn} are real sequences in [0, 1] and {wn}, {vn} are
bounded sequences in C such that

∑∞
n=1 µn <∞,

∑∞
n=1 δn <∞, 0 < lim infn→∞ bn, and

0 < lim infn→∞ βn < lim supn→∞ βn < 1. Then the sequences {xn} and {yn} defined by
the iterative scheme (1.2) converge weakly to a fixed point of T.
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Proof. By using the same proof as in Lemma 2.2, it can be shown that limn→∞ ‖Txn
−xn‖ = 0. Since X is uniformly convex and {xn} is bounded, we may assume that
xn → u weakly as n→∞, without loss of generality. By Lemma 1.5, we have u ∈ F (T ).
Suppose that subsequences {xnk

} and {xmk
} of {xn} converge weakly to u and v,

respectively. From Lemma 1.5, u, v ∈ F (T ). By Lemma 1.2, limn→∞ ‖xn − u‖ and
limn→∞ ‖xn−v‖ exist. It follows from Lemma 1.6 that u = v. Therefore {xn} converges
weakly to fixed point of T . As in the proof of Theorem 2.3, we havelimn→∞ ‖yn−xn‖ = 0
and xn → u weakly as n→∞, it follows that yn → u weakly as n→∞. The proof is
completed. 2
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