BỘ GIÁO DỤC VÀ ĐÀO TẠO VIỆN HÀN LÂM KHOA HỌC VÀ CÔNG NGHỆ VIỆT NAM

VIỆN KHOA HỌC VẬT LIỆU

ÐINH XUÂN LỘC

NGHIÊN CỨU CHẾ TẠO VẬT LIỆU NANÔ YVO₄: Eu^{3+} ; CePO₄: Tb^{3+} VÀ KHẢO SÁT TÍNH CHẤT QUANG CỦA CHÚNG

LUẬN ÁN TIẾN SĨ KHOA HỌC VẬT LIỆU

Hà Nội. 2013

BỘ GIÁO DỤC VÀ ĐÀO TẠO VIỆN HÀN LÂM KHOA HỌC VÀ CÔNG NGHỆ VIỆT NAM

VIỆN KHOA HỌC VẬT LIỆU

ÐINH XUÂN LỘC

NGHIÊN CỨU CHẾ TẠO VẬT LIỆU NANÔ YVO₄:Eu³⁺; CePO₄:Tb³⁺ VÀ KHẢO SÁT TÍNH CHẤT QUANG CỦA CHÚNG

LUẬN ÁN TIẾN SĨ KHOA HỌC VẬT LIỆU

Chuyên ngành: Vật liệu Điện tử

Mã số: 62. 44. 50. 01

HƯỚNG DẪN KHOA HỌC

- 1. GS. TS. Lê Quốc Minh
- 2. PGS. TS. Trần Kim Anh

Hà Nội. 2013

LỜI CẢM ƠN

- Với lòng biết ơn sâu sắc, tôi xin chân thành gửi lời cảm ơn tới GS.TS. Lê Quốc Minh, và PGS.TS. Trần Kim Anh, những người thầy đã tận tình hướng dẫn tôi hoàn thành luận án này.

- Xin chân thành cảm ơn các bạn: TS. Nguyễn Vũ, TS. Trần Thị Kim Chi, TS. Đào Ngọc Nhiệm, TS. Trần Thu Hương, TS. Nguyễn Thanh Hường, TS. Ứng Thị Diệu Thúy, TS. Đỗ Hùng Mạnh, TS. Nguyễn Đức Văn, TS. Trần Đăng Thành đã nhiệt tình giúp đỡ tôi trong suốt thời gian tôi làm luận án.

- Xin chân thành cảm ơn các anh chị, các bạn phòng Vật liệu Quang điện tử, phòng Quang hoá điện tử, Viện Khoa học Vật liệu: Viện Trưởng GS. TS. Nguyễn Quang Liêm, GS. TS. Nguyễn Xuân Phúc, PGS. TS. Lê Văn Hồng, PGS. TS. Phạm Thị Minh Châu, PGS. TS. Phạm Thu Nga, TS. Nguyễn Công Tráng, PGS. TS. Phan Vĩnh Phúc, PGS. TS. Nguyễn Xuân Nghĩa, KSC. Đặng Quốc Trung, PGS. TS. Trần Đại Lâm, TS. Vũ Đình Lãm, PGS. TS. Nguyễn Huy Dân, TS. Vũ Phi Tuyến và các bạn đồng nghiệp đã luôn động viên, giúp đỡ, khích lệ tôi trong suốt thời gian tôi thực hiện luận án.

- Xin chân thành cảm ơn Phòng thí nhiệm trọng điểm Vật liệu và Linh kiện điện tử - Viện Khoa học Vật liệu, Bộ Giáo dục và Đào tạo, Viện Khoa học Vật liệu đã tạo điều kiện thuận lợi để tôi hoàn thành luận án.

- Cuối cùng xin dành những lời cảm ơn sâu nặng nhất đến những người thân thương trong gia đình tôi: Bố, mẹ, vợ, con, các anh chị em và các cháu đã giành cho tôi những tình cảm, động viên, chia sẻ cho tôi rất nhiều trong những năm tháng làm việc vất vả này.

LỜI CAM ĐOAN

- Tôi xin cam đoan đây là công trình nghiên cứu của riêng tôi dưới sự hướng dẫn khoa học của GS.TS. Lê Quốc Minh và PGS.TS. Trần Kim Anh, đã thực hiện tại Viện Khoa học Vật liệu Viện Hàn lâm Khoa học và Công nghệ Việt Nam.

- Các số liệu, kết quả nêu trong luận án được trích dẫn từ các bài báo đã và sắp được xuất bản của tôi và các cộng sự. Các số liệu, kết quả này là trung thực và chưa từng được ai công bố trong các công trình khác.

TÁC GIẢ LUẬN ÁN

Đinh Xuân Lộc

Danh mục các ký hiệu và chữ viết tắt

1. Các chữ viết tắt

DTA	Phân tích nhiệt vi sai	FESEM	Kính hiển vi điện tử quét phát xạ
			trường
TGA	Phân tích nhiệt trọng lượng	TEM	Kính hiển vi điện tử truyền qua
EM	Phát xạ	FWHM	Độ bán rộng cực đại
ET	Truyền năng lượng	HĐBM	Hoạt động bề mặt
EXC	Kích thích	RE	Đất hiếm
V; P; T	V: thể tích; P: áp suất;	Nồi hấp	Nồi hấp chịu áp suất cao
	T: nhiệt độ		(autoclave)

2. Các ký hiệu

λ	Bước sóng	τ	Thời gian sống
λ_{EX}	Bước sóng kích thích	Ι	Cường độ
λ_{Anal}	Bước sóng phân tích	t	Thời gian
T ⁰	Nhiệt độ nung	d	Khoảng cách
t _a	Thời gian nung	υ	Tần số
θ	Góc nhiễu xạ tia X	η	Hiệu suất lượng tử phát quang
α(υ)	Hệ số hấp thụ	β	Độ bán rộng cực đại

DANH MỤC CÁC BẢNG BIỂU

Số bảng		Trang
Bång 1.1	Sự giảm dần của bán kính ion từ nguyên tố La÷Lu	13
Bång 1.2	Một vài dạng cấu trúc và trạng thái ổn định của octho photphat	27
Bång 1.3	Nhiệt độ nóng chảy (°C) của LnPO ₄	28
Bång 3.1	Nồng độ của Y^{3+} , Eu^{3+} và VO_4^{3-} trong mạng YVO_4	51
Bång 4.1	So sánh thông số cấu trúc tinh thể $CePO_4$ kiểu mạng đơn tà	75

DANH MỤC CÁC HÌNH VĨ

Hình 1.1	Sơ đồ mức năng lượng của ion huỳnh quang A	7
Hình 1.2	Sự truyền năng lượng từ ion tăng nhạy tới ion kích hoạt	8
Hình 1.3	Cấu trúc một hệ vật liệu phát quang đồng pha tạp	9
Hình 1.4	Mối quan hệ giữa tỉ số nguyên tử bề mặt và số lớp nguyên tử	10
Hình 1.5	Sơ đồ truyền năng lượng	16
Hình 1.6	Sự truyền năng lượng và phát xạ của cặp ion Ce ³⁺ và Tb ³⁺	16
Hình 1.7	Sơ đồ mức năng lượng của ion Tb^{3+} bị tách do tương tác	17
Hình 1.8	Giån đồ Dieke	18
Hình 1.9	Sơ đồ các mức năng lượng của Ce ³⁺ với Tb ³⁺	23
Hình 1.10	Cấu trúc của vật liệu YVO4 kiểu mạng tetragonal	24
Hình 1.11	Phổ huỳnh quang của Eu ³⁺ trong vật liệu YVO ₄ :Eu ³⁺ và Na(Lu, Eu)0 ₂	25
Hình 1.12	Cấu trúc của vật liệu CePO $_4$ kiểu mạng đơn tà	29
Hình 2.1	Giản đồ Kennedy về mối quan hệ của các điều kiện P.V.T	31
Hình 2.2	Cốc teflon và autoclave chế tạo tại Viện Khoa học Vật liệu	32
Hình 2.3	Phương pháp keo tụ nhiệt độ sôi cao chế tạo hạt đơn phân tán	34
Hình 2.4	Hiện tượng nhiễu xạ tia X xảy ra trên các lớp nguyên tử	38
Hình 2.5	Kính hiển vi điện tử quét FESEM	39
Hình 2.6	Kính hiển vi điện tử truyền qua TEM	40
Hình 2.7	Sơ đồ khối hệ đo kích thích huỳnh quang	42
Hình 2.8	Sơ đồ khối hệ đo huỳnh quang thông thường	43
Hình 2.9	Hệ đo huỳnh quang tại Viện Khoa học Vật liệu	44
Hình 2.10	Sơ đồ hệ đo huỳnh quang phân giải thời gian	47
Hình 2.11	Hệ đo huỳnh quang NANOLOG iHR 320 – Đại học Bách Khoa Hà Nội	47

Hình 3.1	Sơ đồ quy trình chế tạo vật liệu nano YVO ₄ :Eu ³⁺	50
Hình 3.2	Ånh FESEM và TEM của mẫu $YVO_4:Eu^{3+}$ chế tạo bằng phương pháp thủy nhiệt	52
Hình 3.3	Giản đồ nhiễu xạ tia X của các mẫu YVO ₄ :Eu chế tạo bằng phương pháp thủy nhiệt	52
Hình 3.4	Phổ huỳnh quang của mẫu bột YVO_4 : Eu ³⁺ kích thích 370 nm	53
Hình 3.5	Phổ huỳnh quang của mẫu bột YVO_4 : Eu ³⁺ với các nồng độ khác nhau	54
Hình 3.6	Phổ huỳnh quang của các mẫu nano YVO_4 : Eu ³⁺ ứng với các thời gian tổng hợp khác nhau	54
Hình 3.7	Phổ huỳnh quang phân giải thời gian của mẫu bột YVO ₄ :Eu ³⁺ kích thích 337 nm	55
Hình 3.8	Đồ thị suy giảm thời gian huỳnh quang của mẫu bột YVO_4 : Eu^{3+} ở 619 nm dưới kích thích 337 nm	56
Hình 3.9	Phổ huỳnh quang của mẫu bột YVO ₄ :Eu ³⁺ kích thích 325nm	56
Hình 3.10	Một số mẫu in thử dùng mực huỳnh quang chế tạo bằng vật liệu $YVO_4:Eu^{3+}$	58
Hình 4.1	Quy trình tổng hợp vật liệu $LnPO_4$:R (R = Ce, Tb, Eu) bằng phương pháp thủy nhiệt	60
Hình 4.2	$ {Anh}$ FESEM của mẫu vật liệu hạt CePO ₄ :Tb ³⁺ tổng hợp bằng phương pháp thủy nhiệt dùng (NH ₄) ₂ .HPO ₄	61
Hình 4.3	XRD của mẫu vật liệu hạt $CePO_4$: Tb ³⁺ tổng hợp bằng phương pháp thủy nhiệt dùng (NH ₄) ₂ HPO ₄ .	62
Hình 4.4	Phổ huỳnh quang của mẫu vật liệu hạt CePO ₄ :Tb ³⁺ tổng hợp bằng phương pháp thủy nhiệt với (NH ₄) ₂ .HPO4	62
Hình 4.5	Ånh FESEM của mẫu vật liệu thanh $CePO_4:Tb^{3+}$ tổng hợp bằng phương pháp thủy nhiệt dùng Na_3PO_4 ở nhiệt độ 100^0C thời gian 8 giờ và 15 giờ	63
Hình 4.6	XRD của mẫu vật liệu nano thanh CePO ₄ :Tb ³⁺ tổng hợp bằng phương pháp thủy nhiệt dùng Na ₃ PO ₄ .12H ₂ O thời gian 8 giờ	64
Hình 4.7	XRD của mẫu vật liệu nano thanh CePO ₄ :Tb ³⁺ tổng hợp bằng phương pháp thủy nhiệt dùng Na ₃ PO ₄ .12H ₂ O thời gian 15 giờ	64
Hình 4.8	Phổ huỳnh quang của mẫu vật liệu hạt CePO ₄ :Tb ³⁺ tổng hợp bằng phương pháp thủy nhiệt dùng Na ₃ PO ₄ .12H ₂ O	65

Hình 4.9 Hình 4.10	Bình cầu chế tạo vật liệu nanô phát quang CePO ₄ :Tb ³⁺ 5% bằng phương pháp keo tụ trực tiếp trong dung môi nhiệt độ sôi cao Quy trình chế tạo vật liệu L pPO: $R (B = Ce, Th)$ bằng phương pháp keo tụ	66
111111 4.10	trực tiếp trong dung môi nhiệt độ sôi cao	67
Hình 4.11	FESEM của mẫu $CePO_4$: Tb^{3+} tổng hợp trong DEG và TEHP bằng phương	67
	pháp keo tụ trực tiếp trong dung môi nhiệt độ sôi cao	07
Hình 4.12	Phổ huỳnh quang của mẫu CePO4:Tb3+ tổng hợp trong dung môi DEG	68
	bằng phương pháp keo tụ trực tiếp trong dung môi nhiệt độ sôi cao	00
Hình 4.13	Phổ huỳnh quang của mẫu CePO ₄ :Tb ³⁺ tổng hợp trong dung môi TEHP	68
	bằng phương pháp keo tụ trực tiếp trong dung môi nhiệt độ sôi cao	00
Hình 4.14	Quy trình chế tạo mẫu LnPO ₄ :R (R=Ce, Tb, Eu) bằng phương pháp dung nhiệt	70
Hình 4.15	Mẫu keo CePO ₄ :Tb ³⁺ tổng hợp trong dung môi TEHP bằng phương pháp	70
	dung nhiệt	/0
Hình 4.16	FESEM của mẫu CePO ₄ :Tb tổng hợp trong DEG và TEHP bằng phương	71
	dung nhiệt	/1
Hình 4.17	FESEM của mẫu CePO4: Tb tổng hợp trong TEHP bằng phương pháp	71
	dung nhiệt ở áp suất cao	/1
Hình 4.18	XRD của các mẫu CePO4: Th tổng hợp trong dung môi DEG và TEHP	
	bằng phương pháp keo tụ trong dung môi nhiệt độ sôi cao và phương	72
	pháp dung nhiệt.	
Hình 4.19	Phổ huỳnh quang của mẫu CePO4: Tb ³⁺ tổng hợp trong dung môi DEG và	73
	TEHP bằng phương pháp dung nhiệt	15
Hình 4.20	X RD của mẫu CePO ₄ : Tb ³⁺ 5% chế tạo bằng phương pháp dung nhiệt sấy	74
	$ m \mathring{o}~60^{0}C$ (A) và ủ $ m \mathring{o}~500^{0}C$ (B) trong không khí	/4
Hình 4.21	Giản đồ nhiễu xạ tia X của mẫu vật liệu CePO ₄ :Tb ³⁺ 5% sau khi được ủ ở	
	nhiệt độ 950°C trong môi trường không khí so với các thẻ chuẩn của	76
	CePO ₄ và CeP ₃ O ₉	
Hình 4.22	Phổ hồng ngoại của mẫu CePO ₄ :Tb ³⁺ từ Na ₃ PO ₄ (a) và CePO ₄ :Tb trong	
	TEHP tổng hợp bằng phương pháp dung nhiệt (đã rửa khá sạch dung	77
	môi)	
Hình 4.23	Phổ hồng ngoại của mẫu CePO ₄ :Tb ³⁺ tổng hợp trong TEHP bằng	78
	phương pháp dung nhiệt (chưa rửa sạch dung môi)	. 0

Hình 4.24	Giản đồ hiệu ứng nhiệt của mẫu CePO ₄ :Tb ³⁺ từ Na ₃ PO ₄	79
Hình 4.25	Giản đồ hiệu ứng nhiệt của mẫu CePO ₄ :Tb ³⁺ tổng hợp trong TEHP bằng	80
	phương pháp dung nhiệt	80
Hình 4.26	Phổ phân tích nhiệt vi sai của mẫu bột CePO ₄ :Tb ³⁺ 5% trong các môi	01
	trường không khí và môi trường khí trơ Ar.	01
Hình 4.27	Các phổ hấp thụ của các dung dịch keo CePO ₄ :Tb ³⁺ 5% pha loãng bằng	Q /
	TEHP	04
Hình 4.28	Phổ huỳnh quang của mẫu CePO4:Tb3+ dạng keo tổng hợp trong dung	85
	môi TEHP bằng phương pháp dung nhiệt	05
Hình 4.29	Phổ huỳnh quang của mẫu CePO4:Tb ³⁺ sấy khô và ủ nhiệt	86
Hình 4.30	Phổ huỳnh quang mẫu bột CePO ₄ :Tb5% sấy ở nhiệt độ 60^{0} C.	87
Hình 4.31	Phổ huỳnh quang của CePO ₄ :Tb ³⁺ đo ở nhiệt độ thấp	88
Hình 4.32	Đồ thị biểu diễn sự truyền năng lượng của ion Ce^{3+} cho ion Tb^{3+} tại các	20
	cặp mức năng lượng ${}^{5}D_{o} - {}^{7}F_{J} (J = 6,5,4,3)$	89
Hình 4.33	Phổ kích thích huỳnh quang của mẫu CePO ₄ :Tb ³⁺	91
Hình 4.34	Đường cong suy giảm thời gian huỳnh quang của CePO ₄ :Tb ³⁺ dạng thanh	
	tổng hợp từ Na ₃ PO ₄ dạng hạt cầu tổng hợp trong dung môi TEHP bằng	92
	phương pháp dung nhiệt	
Hình 4.35	Phổ huỳnh quang của mẫu vật liệu $CePO_4:Tb^{3+}$ theo nồng độ ion Tb^{3+}	93
Hình 4.36	Phổ huỳnh quang của mẫu vật liệu CePO ₄ :Tb ³⁺ 5% theo thời gian chế tạo	94
Hình 4.37	Phổ huỳnh quang của mẫu vật liệu CePO ₄ :Tb ³⁺ 5% theo nhiệt độ chế tạo	06
	(đo theo kích thích 325 nm)	90
Hình 4.38	Mô hình giải thích ảnh hưởng của pH tới hình thái và kích thước của hạt	07
	vật liệu	91
Hình 4.39	Phổ huỳnh quang của mẫu vật liệu $CePO_4$: Tb^{3+} 5% theo pH phản ứng	98
Hình 4.40	Mô hình hạt vật liệu khi có các phần tử dung môi bao bọc xung quanh	99
Hình 4.41	Giải thích cơ chế hình thành thanh vật liệu của các nhóm Yuebin Li,	101
	Minhua cao	101
Hình 4.42	Phổ huỳnh quang của mẫu vật liệu $CePO_4:Tb^{3+}$ 5% theo áp suất phản	102
	ứng	102
Hình 4,43	Phổ huỳnh quang của mẫu vật liệu CePO ₄ :Tb ³⁺ 5% theo theo nhiệt độ ủ	103
	mẫu	105

Hình 4.44	Ånh hưởng của nhiệt độ ủ mẫu lên phổ huỳnh quang của mẫu vật liệu $CePO_4:Tb^{3+} 5\%$	103
Hình 4.45	Ảnh của đèn neonsign khi chưa phóng điện và khi phóng điện phát ánh sáng màu xanh lá cây	104
Hình 5.1	Mô hình cấu trúc của mẫu vật liệu nanô CePO ₄ :Tb ³⁺ bọc 1, 2 và 3 lớp vỏ LaPO ₄	107
Hình 5.2	Ånh TEM của mẫu vật liệu hạt CePO ₄ :Tb ³⁺ nanô lõi	109
Hình 5.3	Ånh TEM của mẫu vật liệu nanô CePO ₄ :Tb@LaPO ₄	109
Hình 5.4	XRD của mẫu vật liệu nanô CePO ₄ :Tb ³⁺ lõi, CePO ₄ :Tb@LaPO ₄ và CePO ₄ :Tb@YPO ₄	110
Hình 5.5	Phổ EDS của mẫu vật liệu nanô CePO ₄ :Tb ³⁺ và vật liệu CePO ₄ :Tb@LaPO ₄	111
Hình 5.6	Phổ hấp thụ của vật liệu nanô CePO ₄ :Tb@LaPO ₄	112
Hình 5.7	Phổ huỳnh quang của các mẫu CePO ₄ :Tb ³⁺ lõi (1) và CePO ₄ :Tb@LaPO ₄ với tỷ lê lõi /vỏ 1:1M (2) và 1:3M (3)	113
Hình 5.8	Phổ huỳnh quang của mẫu vật liệu CePO ₄ :Tb@LaPO ₄ (tỷ lệ lõi /vỏ = $1:2(mol)$) so sánh với phổ huỳnh quang của mẫu vật liệu lõi CePO ₄ :Tb ³⁺	114
Hình 5.9	So sánh phổ huỳnh quang của CePO ₄ :Tb@LaPO ₄ nanô cấu trúc lõi /vỏ có độ dầy lớp vỏ bọc 1 lần, 2 lần và 3 lần	115
Hình5.10	Phổ huỳnh quang của vật liệu nanô CePO ₄ :Tb@LaPO ₄ đo ở nhiệt độ thấp	116
Hình 5.11	Phổ kích thích huỳnh quang của $CePO_4$:Tb ³⁺ lõi (2) CePO ₄ :Tb@LaPO ₄ (1) và phổ huỳnh quang của CePO ₄ :Tb@LaPO ₄ (3)	117
Hình 5.12	Phổ huỳnh quang của các vật liệu nanô CePO ₄ :Tb ³⁺ được bọc các loại vỏ phốt phát đất hiếm khác nhau	119
Hình 5.13	Ảnh hưởng của khuyết tật đối với hạt nanô không bọc vỏ và bọc vỏ	120
Hình 5.14	Đồ thị suy giảm huỳnh quang của mẫu thanh $CePO_4:Tb^{3+}$ khi chưa bọc vỏ (a) và khi được bọc vỏ La PO_4 (b)	121
Hình 5.15	Đồ thị suy giảm thời gian huỳnh quang của mẫu hạt keo hình cầu $CePO_4:Tb^{3+}$ khi chưa bọc vỏ và sau khi được bọc vỏ La PO_4	122