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Table of Notations

IN := {1, 2, . . .} set of positive natural numbers

∅ empty set

IR set of real numbers

IR++ set of x ∈ IR with x > 0

IR+ set of x ∈ IR with x ≥ 0

IR− set of x ∈ IR with x ≤ 0

IR := IR ∪ {±∞} set of generalized real numbers

|x| absolute value of x ∈ IR
IRn n-dimensional Euclidean vector space

‖x‖ norm of a vector x

IRm×n set of m× n-real matrices

detA determinant of a matrix A

A> transposition of a matrix A

‖A‖ norm of a matrix A

X∗ topological dual of a norm space X

〈x∗, x〉 canonical pairing

〈x, y〉 canonical inner product

(̂u, v) angle between two vectors u and v

B(x, δ) open ball with centered at x and radius δ

B̄(x, δ) closed ball with centered at x and radius δ

BX open unit ball in a norm space X

B̄X closed unit ball in a norm space X

posΩ convex cone generated by Ω

spanΩ linear subspace generated by Ω

dist(x; Ω) distance from x to Ω

{xk} sequence of vectors

xk → x xk converges to x in norm topology

x∗k
w∗→ x∗ x∗k converges to x∗ in weak* topology
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∀x for all x

x := y x is defined by y

N̂(x; Ω) Fréchet normal cone to Ω at x

N(x; Ω) limiting normal cone to Ω at x

f : X → Y function from X to Y

f ′(x), ∇f(x) Fréchet derivative of f at x

ϕ : X → IR extended-real-valued function

domϕ effective domain of ϕ

epiϕ epigraph of ϕ

∂ϕ(x) limiting subdifferential of ϕ at x

∂2ϕ(x, y) limiting second-order subdifferential of ϕ at x

relative to y

F : X ⇒ Y multifunction from X to Y

domF domain of F

rgeF range of F

gphF graph of F

kerF kernel of F

D̂∗F (x, y) Fréchet coderivative of F at (x, y)

D∗F (x, y) Mordukhovich coderivative of F at (x, y)
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