MINISTRY OF EDUCATION AND TRAINING HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY

NGUYEN THE TIEN

SYNTHESIZE AND INVESTIGATE THE CATALYTIC ACTIVITY OF THREE-WAY CATALYSTS BASED ON MIXED METAL OXIDES FOR THE TREATMENT OF EXHAUST GASES FROM INTERNAL COMBUSTION ENGINE

CHEMICAL ENGINEERING DISSERTATION

HANOI-2014

MINISTRY OF EDUCATION AND TRAINING HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY

NGUYEN THE TIEN

SYNTHESIZE AND INVESTIGATE THE CATALYTIC ACTIVITY OF THREE-WAY CATALYSTS BASED ON MIXED METAL OXIDES FOR THE TREATMENT OF EXHAUST GASES FROM INTERNAL COMBUSTION ENGINE

Speciality: Chemical Engineering Code: 62520301

CHEMICAL ENGINEERING DISSERTATION

SUPER VISOR: ASSOCIATE PROFESSOR, DOCTOR LE MINH THANG

HANOI-2014

ACKNOWLEDGEMENTS

This PhD thesis has been carried out at the Laboratory of Environmental Friendly Material and Technologies, Advance Institute of Science and Technology, Department of Organic and Petrochemical Technology, Laboratory of the Petrochemical Refinering and Catalytic Materials, School of Chemical Engineering, Hanoi University of Science and Technology (Vietnam) and Department of Inorganic and Physical Chemistry, Ghent University (Belgium). The work has been completed under supervision of Associate Prof. Dr. Le Minh Thang.

Firstly, I would like to thank Associate Prof. Dr. Le Minh Thang. She helped me a lot in the scientific work with her thorough guidance, her encouragement and kind help.

I want to thank all teachers of Department of Organic and Petrochemical Technology and the technicians of Laboratory of Petrochemistry and Catalysis Material, Institute of Chemical Engineering for their guidance, and their helps in my work.

I want to thank Prof. Isabel and all staff in Department of Inorganic and Physical Chemistry, Ghent University for their kind help and friendly attitude when I lived and studied in Ghent.

I gratefully acknowledge the receipt of grants from VLIR (Project ZEIN2009PR367) which enabled the research team to carry out this work.

I acknowledge to all members in my research group for their friendly attitude and their assistances.

Finally, I want to thank my family for their love and encouragement during the whole period.

Nguyen The Tien September 2013

COMMITMENT

I assure that this is my own research. All the data and results in the thesis are completely true, was agreed to use in this paper by co-author. This research hasn't been published by other authors than me.

Nguyen The Tien

CONTENT OF THESIS		
LIST OF TA	ABLES	6
LIST OF FI	GURES	7
INTRODUC		10
	TURE REVIEW	11
1.1 Air pollution and air pollutants 11		
1.1.1 Ai in Vietnam	ir pollution from exhaust gases of internal combustion	engine 11
	ir pollutants	11
1.1.2.1	Carbon monoxide (CO)	11
1.1.2.2	Volatile organic compounds (VOCs)	11
1.1.2.3	Nitrous oxides (INO _x)	12
1.1.2.4		12
	omposition of exhaust gas	13
	ments of air pollution	14
	eparated treatment of pollutants	14 14
	CO treatments VOCs treatments	14
	NO _x treatments	14
	Soot treatment	15
	imultaneous treatments of three pollutants	16
	Two successive converters	17
1.2.2.2	Three-way catalytic (TWC) systems	17
1.3 Catal	yts for the exhaust gas treatment	19
1.3.1 Ca	atalytic systems based on noble metals (NMs)	20
	atalytic systems based on perovskite	21
	atalytic systems based on metallic oxides	23
	Metallic oxides based on CeO ₂	23
	Catalytic systems based on MnO ₂	24
1.3.3.3 1.3.3.4		25
	Other metallic oxides ther catalytic systems	26 27
	anism of the reactions	28
	echanism of hydrocarbon oxidation over transition metal	-
28	•	UNICES
	echanism of the oxidation reaction of carbon monoxide	29
1.4.3 M	echanism of the reduction of NO _x	31
1.4.4 R	eaction mechanism of three-way catalysts	33
1.5 Aims	of the thesis	35
2 EXPERI	MENTAL	37
2.1 Synth	nesis of the catalysts	37
	ol-gel synthesis of mixed catalysts	37
2.1.2 Ca	atalysts supported on γ -Al ₂ O ₃	37
	ging process	38
	ico-Chemistry Experiment Techniques	38
2.2.1 X-	-ray Diffraction	38

2.2.2 Scanning Electron Microscopy (SEM) and Transmission			
Electron Microscopy (TEM)	40		
2.2.3 BET method for the determination of surface area	40		
2.2.4 X-ray Photoelectron Spectroscopy (XPS)	40		
2.2.5 Thermal Analysis	41		
2.2.6 Infrared Spectroscopy	41		
2.2.7 Temperature Programmed Techniques	42		
2.3 Catalytic test	43		
2.3.1 Micro reactor setup	43		
2.3.2 The analysis of the reactants and products	44		
2.3.2.1 Hydrocarbon oxidation	45		
2.3.2.2 CO oxidation	47		
2.3.2.3 Soot treatment	47		
2.3.2.4 Three -pollutant treatment	47		
3 RESULTS AND DISCUSSIONS	48		
3.1 Selection of components for the three-way catalysts	48		
3.1.1 Study the complete oxidation of hydrocarbon	48		
3.1.1.1 Single and bi-metallic oxide	48		
3.1.1.2 Triple metallic oxides	51		
3.1.2 Study the complete oxidation of CO 3.1.2.1 Catalysts based on single and bi-metallic oxide	53		
3.1.2.1 Catalysts based on single and bi-metallic oxide 3.1.2.2 Triple oxide catalysts MnCoCe	53 54		
3.1.2.3 Influence of MnO ₂ , Co ₃ O ₄ , CeO ₂ content on catalytic activity	-		
MnCoCe catalyst	59 S		
3.1.3 Study the oxidation of soot	62		
3.2 MnO ₂ -Co ₃ O ₄ -CeO ₂ based catalysts for the simultaneous	-		
treatment of pollutants	66		
3.2.1 MnO ₂ -Co ₃ O ₄ -CeO ₂ catalysts with MnO ₂ /Co ₃ O ₄ =1/3	66		
3.2.2 MnO ₂ -Co ₃ O ₄ -CeO ₂ with the other MnO ₂ /Co ₃ O ₄ ratio	68		
3.2.3 Influence of different reaction conditions on the activity of			
MnCoCe 1-3-0.75	69		
3.2.4 Activity for the treatment of soot and the influence of soot of	on		
activity of MnCoCe 1-3-0.75	72		
3.2.5 Influence of aging condition on activity of MnCoCe catalysts	74		
3.2.5.1 The influence of steam at high temperature	74		
3.2.5.2 The characterization and catalytic activity of MnCoCe 1-3-0			
in different aging conditions	77		
3.2.6 Activity of MnCoCe 1-3-0.75 at room temperature	80		
3.3 Study on the improvement of NO_x treatment of MnO_2 -	• •		
Co ₃ O ₄ -CeO ₂ catalyst by addition of BaO and WO ₃	81		
3.4 Study on the improvement of the activity of MnO ₂ -Co ₃ C) ₄ -		
CeO ₂ catalyst after aging by addition of ZrO ₂	84		
3.5 Comparison between MnO ₂ -Co ₃ O ₄ -CeO ₂ catalyst and noble			
catalyst	87		
4 CONCLUSIONS	91		
REFERENCES 92			
	100		

ABBREVIATION

TWCs: Three-Way Catalysts NO_x: Nitrous Oxides **VOCs: Volatile Organic Compounds** PM10: Particulate Matter less than 10 nm in diameter NMVOCs: Non-Methane Volatile Organic Compounds HC: hydrocarbon A/F ratio: Air/Fuel ratio λ : the theoretical stoichiometric value, defined as ratio of actual A/F to stoichiometric; λ can be calculated $\lambda = (2O_2 + NO)/(10C_3H_8 + CO); \lambda = 1$ at stoichiometry (A/F = 14.7) SOF: Soluble Organic Fraction **DPM: Diesel Particulate Matter CRT:** Continuously Regenerating Trap NM: Noble Metal Cpsi: Cell Per Inch Square In.: inch CZ (Ce-Zr): mixtures of CeO_2 and ZrO_2 CZALa: mixtures of CeO₂, ZrO₂, Al₂O₃, La₂O₃ NGVs: natural gas vehicles OSC: oxygen storage capacity WGS: water gas shift LNTs: Lean NO_x traps NSR: NO_x storage-reduction SCR: selective catalytic reduction SG: sol-gel MC: mechanical FTIR: Fourier-Transform Infrared Eq.: equation T_{100} : the temperature that correspond to the pollutant was completely treatment T_{max}: The maxium peak temperature was presented as reference temperature of the maximum reaction rate in TG-DTA (DSC) diagram Vol.: volume Wt.: weight Cat: catalyst at: atomic min.: minutes h: hour

LIST OF TABLES

Table 1.1 Example of exhaust conditions for two- and four-stroke, diesel and lean-four-stroke
<i>engines</i> [67]
Table 1.2 Adsorption/desorption reactions on Pt catalyst [101]
Table 1.3 Surface reactions of propylene oxidation [101]
Table 1.4 Surface reactions of CO oxidation [101]
Table 1.5 Surface reactions of hydroxyl spices, NO and NO2 [101] 35
Table 2.1 Aging conditions of MnCoCe catalysts
Table 2.2 Strong line of some metallic oxides 39
Table 2.3 Binding energy of some atoms [102]41
Table 2.4 Specific wave number of some function group or compounds 42
Table 2.5 Composition of mixture gases at different reaction conditions for C_3H_6 oxidation43
Table 2.6 Composition of mixture gases at different reaction conditions for CO oxidation
Table 2.7 Composition of mixture gases at different reaction conditions for treatment of CO, C_3H_{67} ,
NO
Table 2.8 Temperature Program of analysis method for the detection of reactants and products45
Table 2.9 Retention time of some chemicals
Table 3.1 Quantity of hydrogen consumed volume (ml/g) at different reduction peaks in TPR-H ₂
profiles of pure CeO_2 , Co_3O_4 , MnO_2 and CeO_2 - Co_3O_4 , MnO_2 - Co_3O_4 chemical mixtures51
Table 3.2 Consumed hydrogen volume (ml/g) of the mixture MnO ₂ -Co ₃ O ₄ -CeO ₂ 1-3-0.7555
Table 3.3 Adsorbed oxygen volume (ml/g) of some pure single oxides (MnO_2, Co_3O_4, CeO_2) and
chemical mixed oxides MnCoCe 1-3-0.75
Table 3.4 Surface atomic composition of the sol-gel and mechanical sample 59
Table 3.5 T _{max} of mixture of single oxides and soot in TG-DTA (DSC) diagrams
Table 3.6 Catalytic activity of single oxides for soot treatment 63
Table 3.7 T_{max} of mixture of multiple oxides and soot determined from TG-DTA diagrams
Table 3.8 Catalytic activity of multiple oxides for soot treatment at 500°C
Table 3.9 Soot conversion of some mixture of MnCoCe 1-3-0.75 and soot in the flow containing
<i>CO</i> : 4.35%, <i>O</i> ₂ : 7.06%, <i>C</i> ₃ <i>H</i> ₆ : 1.15%, <i>NO</i> : 1.77% at 500°C for 425 min
Table 3.10 Specific surface area of MnCoCe catalysts before and after aging in the flow containing
57% vol. H_2O at $800^\circ C$ for 24h
Table 3.11 Consumed hydrogen volume (ml/g) of the MnCoCe 1-3-0.75 fresh and aging at 800°C
<i>in flow containing 57% steam for 24h</i>
Table 3.12 Specific surface area of MnCoCe 1-3-0.75 fresh and after aging in different conditions
Table 3.13 Specific surface area of catalysts containing MnO ₂ , Co ₃ O ₄ , CeO ₂ , BaO and WO ₃ 81
Table 3.14 Specific surface area of some catalyst containing MnO_2 , Co_3O_4 , CeO_2 , ZrO_2 before and
after aging at 800°C in flow containing 57% steam for 24h
Table 3.15 Specific surface area of noble catalyst and metallic oxide catalysts supported on y-
$\frac{1}{Al_2O_3}$

LIST OF FIGURES

Figure 1.1 Micrograph of diesel soot, showing particles consisting of clumps of spherules [110].13 Figure 1.2 A typical arrangement for abatement of NO_x from a heavy-duty diesel engine using urea
as reducing agent [67]15
Figure 1.3 Principle of filter operation (1) and filter re-generation (2) for a soot removal system,
using fuel powered burners [67]16
Figure 1.4 The working principle of the continuously regenerating particulate trap [67]16
Figure 1.5 Scheme of successive two-converter model [1]17
<i>Figure 1.6 Three- way catalyst performance determined by engine air to fuel ratio [43]18</i>
Figure 1.7 Diagram of a modern TWC/engine/oxygen sensor control loop for engine18
<i>Figure 1.8 Wash-coats on automotive catalyst can have different surface structures as shown with SEM micrographs [43]</i>
Figure 1.9 Improvement trend of catalytic converter [43]
Figure 1.10 Scheme of catalytic hydrocarbon oxidation; H-hydrocarbon, C-catalyst, R ₁ to R ₅ -labile
intermediate, probably of the peroxide type [97]
Figure 1.11 Reaction cycle and potential energy diagram for the catalytic oxidation of CO by O_2
[98]
<i>Figure 1.12 Reaction pathways of CO oxidation over the metallic oxides [34]</i>
Figure 1.12 Reaction painways of CO oxidation over the metatic oxides [54]
Figure 1.13 Chemical reaction painways of selective catalytic reaction of NO_x by propane [33] 52 Figure 1.14 Principle of operation of an NSR catalyst: NO_x are stored under oxidising conditions
(1) and then reduced on a TWC when the A/F is temporarily switched to rich conditions (2) [67].33
Figure 1.15 Schematic representation of the seven main steps involved in the conversion of the
exhaust gas pollutants in a channel of a TWC [100]
Figure 2.1 Aging process of the catalyst (1: air pump; 2,6: tube furnace, 3: water tank, 4: heater,
5,7: screen controller, V1,V2: gas valve)
Figure 2.2 Micro reactor set up for measurement of catalytic activity
Figure 2.3 The relationship between concentration of C_3H_6 and peak area46
<i>Figure 2.4 The relationship between concentration of CO</i> ₂ <i>and peak area46</i>
<i>Figure 2.5 The relationship between concentration of CO and peak area</i> 47
Figure 3.1 Catalytic activity of some mixed oxide MnCo, CoCe and single metallic oxide in
deficient oxygen condition
Figure 3.2 Catalytic activity of MnCo 1-3 and CeCo 1-4 catalysts in excess oxygen condition49
Figure 3.3 C_3H_6 conversion of CeCo1-4 in different reaction conditions (condition a: excess
oxygen condition with the presence of CO: $0.9 \ \%C_3H_6$, $0.3\%CO$, $5\%O_2$, N_2 balance, condition b:
excess oxygen condition with the presence of CO and H_2O : 0.9 %C ₃ H ₆ , 0.3 %CO, 2% H ₂ O, 5 %O ₂ ,
N_2 balance)
<i>Figure 3.4 XRD patterns of CeCo=1-4, MnCo=1-3 chemical mixtures and some pure single oxides</i>
50
Figure 3.5 Conversion of C_3H_6 , C_3H_8 and C_6H_6 on MnCoCe 1-3-0.75 catalyst under sufficient
oxygen condition
Figure 3.6 SEM images of MnCo 1-3 fresh (a),MnCoCe 1-3-0.75 before (a) and after (b) reaction
under sufficient oxygen condition $(O_2/C_3H_8=5/1)$
Figure 3.7 XRD pattern of MnCoCe 1-3-0.75 and original oxides
Figure 3.8 CO conversion of some catalysts in sufficient oxygen condition
Figure 3.9 SEM images of MnCo=1-3 before (a) and after (b) reaction under sufficient oxygen condition
Figure 3.10 CO conversion of original oxides (MnO_2 , Co_3O_4 , CeO_2) and mixtures of these oxides in
excess oxygen condition $(O_2/CO=1.6)$
<i>Figure 3.11 TPR H</i> ₂ <i>profiles of the mixture MnCoCe 1-3-0.75, MnCo 1-3 and pure MnO</i> ₂ , <i>Co</i> ₃ <i>O</i> ₄ , <i>CeO</i> ₂ <i>samples</i>
Figure 3.12 IR spectra of some catalyst ((1): CeO ₂ ; (2): Co ₃ O ₄ ; (3): MnO ₂ ; (4): MnCo 1-3;
$(5): MnCoCe \ 1-3-0.75 \ (MC); \ (6): \ MnCoCe \ 1-3-0.75 \ (SG)) \dots 57$

Synthesize and investigate the catalytic activity of three-way catalysts based on mixed metal oxides for the treatment of exhaust gases from internal combustion engine Figure 3.13 XRD pattern of MnCoCe 1-3-0.75 synthesized by sol-gel and mechanical mixing Figure 3.14 XPS measurement of Co 2p region (a), Ce 3d region (b), Mn 2p region (c) and O 1s region (d) of the mechanical mixture (1) and chemical MnCoCe 1-3-0.75 sample (2)......58 Figure 3.15 XRD patterns of MnO₂-Co₃O₄-CeO₂ samples with MnO₂-Co₃O₄=1-3(MnCoCe 1-3-0.17 (a), MnCoCe 1-3-0.38 (b), MnCoCe 1-3-0.75 (c), MnCoCe 1-3-1.26 (d); MnCoCe 1-3-1.88 (e) Figure 3.16 XRD patterns of MnO₂-Co₃O₄-CeO₂ samples with MnO₂-Co₃O₄=7-3: MnCoCe 7-3-4.29 (a), MnCoCe 7-3-2.5 (b) and MnCo=7-3 (c).....60 Figure 3.17 Specific surface area of MnCoCe catalysts with different MnO₂/Co₃O₄ ratios......61 Figure 3.18 Temperature to reach 100% CO conversion (T_{100}) of mixed MnO_2 -Co₃O₄-CeO₂ samples with the molar ratio of MnO_2 - Co_3O_4 of 1-3 (a) and MnO_2 - Co_3O_4 =7-3 (b) with different Figure 3.19 TG-DSC and TG-DTA of soot (a), mixture of soot- Co_3O_4 (b), soot- MnO_2 (c), soot-Figure 3.20 XRD patterns of MnCoCe 1-3-0.75 (1), MnCoCeV 1-3-0.75-0.53 (2), MnCoCeV 1-3-Figure 3.21 TG-DTA of mixtures of soot and catalyst (a: MnCoCe 1-3-0.75, b: MnCoCeV 1-3-Figure 3.22 Catalytic activity of MnCoCeV 1-3-0.75- 3.17 in the gas flow containing 4.35% CO, Figure 3.23 C_3H_6 and CO conversion of MnCoCe catalyst with MnO₂/Co₃O₄=1-3 (flow containing) Figure 3.24 Catalytic activity of MnCoCe catalyst with MnO_2 -Co₃O₄ =1-3 (flow containing 4.35%) Figure 3.25 SEM images of MnCoCe 1-3-0.75 (a), MnCoCe 1-3-1.26 (b), MnCoCe 1-3-1.88 (c).68 Figure 3.26 Catalytic activity of MnCoCe catalysts with ratio MnO_2 -Co₃O₄=7-3(flow containing) Figure 3.27 Catalytic activity of MnCoCe 1-3-0.75 with different lambda values......70 Figure 3.28 CO and $C_{3}H_{6}$ conversion of MnCoCe 1-3-0.75 in different condition (non-CO₂ and Figure 3.29 Catalytic activity of MnCoCe 1-3-0.75 at high temperatures in 4.35% CO, 7.65% O₂, Figure 3.30 Catalytic activity of MnCoCe 1-3-0.75 with the different mass ratio of catalytic/soot (a: C_3H_6 conversion, b: NO conversion, c: CO_2 concentration in outlet flow; d: CO concentration Figure 3.31 Catalytic activity of MnCoCe (MnO_2 - Co_3O_4 =1-3) catalysts before and after aging at Figure 3.32 XRD patterns of MnCoCe catalysts before and after aging in a flow containing 57% vol.H₂O at 800°C for 24h (M1: MnCoCe 1-3-0.75 fresh, M2: MnCoCe 1-3-0.75 aging, M3: Figure 3.33 SEM images of MnCoCe catalysts before and after aging at 800°C in flow containing 57% steam for 24h (a,d: MnCoCe 1-3-0.75 fresh and aging, b,e: MnCoCe 1-3-.26 fresh and aging, *c,f: MnCoCe 1-3-1.88 fresh and aging, respectively)......*76 Figure 3.34 TPR-H₂ pattern of MnCoCe 1-3-0.75 fresh and aging at 800°C in flow containing 57% steam for 24h......77 Figure 3.35 Catalytic activity of MnCoCe 1-3-0.75 fresh and after aging in different conditions ...78 Figure 3.37 SEM images of MnCoCe 1-3-0.75 fresh and after aging in different conditions80 Figure 3.39 CO and C_3H_6 conversion of MnCoCe 1-3-0.75 at room temperature after activation 2h in gas flow 4.35% CO, 7.65% O₂, 1.15% C₃H₆, 0.59% NO with and without CO₂......81 Figure 3.40 XRD pattern of catalysts based on MnO₂, Co₃O₄, CeO₂, BaO and WO₃82