
COMPLETE DIGITAL DESIGN A COMPREHENSIVE GUIDE

A COMPREHENSIVE GUIDE TO DIGITAL ELECTRONICS AND COMPUTER

MARK BALCH

COMPLETE DIGITAL DESIGN

COMPLETE DIGITAL DESIGN

A Comprehensive Guide to Digital Electronics and Computer System Architecture

Mark Balch

McGRAW-HILL

New York Chicago San Francisco Lisbon London Madrid Mexico City Milan New Delhi San Juan Seoul Singapore Sydney Toronto

Library of Congress Cataloging-in-Publication Data

Balch, Mark.
Complete digital design : a comprehensive guide to digital electronics and computer system architecture / by Mark Balch.
p. cm.
Includes bibliographical references and index.
ISBN 0-07-140927-0
1. Digital electronics. 2. Computer architecture. I. Title.
TK7868.D5B37 2003
621.81-dc21
2003046465

Copyright © 2003 by The McGraw-Hill Companies, Inc. All rights reserved. Printed in the United States of America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a data base or retrieval system, without the prior written permission of the publisher.

1 2 3 4 5 6 7 8 9 0 DOC/DOC 9 8 7 6 5 4 3

ISBN 0-07-140927-0

The sponsoring editor for this book was Steve Chapman and the production supervisor was Pamela A. Pelton. It was set in Century Schoolbook by J. K. Eckert & Company, Inc.

Printed and bound by RR Donnelley.

This book is printed on recycled, acid-free paper containing a minimum of 50% recycled, de-inked fiber.

McGraw-Hill books are available at special quantity discounts to use as premiums and sales promotions or for use in corporate training programs. For more information, please write to the Director of Special Sales, Professional Publishing, McGraw-Hill, Two Penn Plaza, New York, NY 10121-2298. Or contact your local bookstore.

041 PG1 701

Information contained in this work has been obtained by The McGraw-Hill Companies, Inc. ("McGraw-Hill") from sources believed to be reliable. However, neither McGraw-Hill nor its authors guarantee the accuracy or completeness of any information published herein, and neither McGraw-Hill nor its authors shall be responsible for any errors, omissions, or damages arising out of use of this information. This work is published with the understanding that McGraw-Hill and its authors are supplying information but are not attempting to render engineering or other professional services. If such services are required, the assistance of an appropriate professional should be sought.

CONTENTS

Preface xiii Acknowledgments xix

PART 1 Digital Fundamentals

- 1.1 Boolean Logic / 3
- 1.2 Boolean Manipulation / 7
- 1.3 The Karnaugh map / 8
- 1.4 Binary and Hexadecimal Numbering / 10
- 1.5 Binary Addition / 14
- 1.6 Subtraction and Negative Numbers / 15
- 1.7 Multiplication and Division / 17
- 1.8 Flip-Flops and Latches / 18
- 1.9 Synchronous Logic / 21
- 1.10 Synchronous Timing Analysis / 23
- 1.11 Clock Skew / 25
- 1.12 Clock Jitter / 27
- 1.13 Derived Logical Building Blocks / 28

- 2.1 The Integrated Circuit / 33
- 2.2 IC Packaging / 38
- 2.3 The 7400-Series Discrete Logic Family / 41
- 2.4 Applying the 7400 Family to Logic Design / 43
- 2.5 Synchronous Logic Design with the 7400 Family / 45
- 2.6 Common Variants of the 7400 Family / 50
- 2.7 Interpreting a Digital IC Data Sheet / 51

- 3.1 The Digital Computer / 56
- 3.2 Microprocessor Internals / 58
- 3.3 Subroutines and the Stack / 60
- 3.4 Reset and Interrupts / 62
- 3.5 Implementation of an Eight-Bit Computer / 63
- 3.6 Address Banking / 67
- 3.7 Direct Memory Access / 68
- 3.8 Extending the Microprocessor Bus / 70
- 3.9 Assembly Language and Addressing Modes / 72

- 4.1 Memory Classifications / 77
- 4.2 EPROM / 79
- 4.3 Flash Memory / 81
- 4.4 EEPROM / 85
- 4.5 Asynchronous SRAM / 86
- 4.6 Asynchronous DRAM / 88
- 4.7 Multiport Memory / 92
- 4.8 The FIFO / 94

Chapter 5 Serial Communications......97

- 5.1 Serial vs. Parallel Communication / 98
- 5.2 The UART / 99
- 5.3 ASCII Data Representation / 102
- 5.4 RS-232 / 102
- 5.5 RS-422 / 107
- 5.6 Modems and Baud Rate / 108
- 5.7 Network Topologies / 109
- 5.8 Network Data Formats / 110
- 5.9 RS-485 / 112
- 5.10 A Simple RS-485 Network / 114
- 5.11 Interchip Serial Communications / 117

- 6.1 Evolution / 121
- 6.2 Motorola 6800 Eight-bit Microprocessor Family / 122
- 6.3 Intel 8051 Microcontroller Family / 125
- 6.4 Microchip PIC® Microcontroller Family / 131
- 6.5 Intel 8086 16-Bit Microprocessor Family / 134
- 6.6 Motorola 68000 16/32-Bit Microprocessor Family / 139

PART 2 Advanced Digital Systems

Chapter 7 Advanced Microprocessor Concepts145

- 7.1 RISC and CISC / 145
- 7.2 Cache Structures / 149
- 7.3 Caches in Practice / 154
- 7.4 Virtual Memory and the MMU / 158
- 7.5 Superpipelined and Superscalar Architectures / 161
- 7.6 Floating-Point Arithmetic / 165
- 7.7 Digital Signal Processors / 167
- 7.8 Performance Metrics / 169

- 8.1 Synchronous DRAM / 173
- 8.2 Double Data Rate SDRAM / 179
- 8.3 Synchronous SRAM / 182
- 8.4 DDR and QDR SRAM / 185
- 8.5 Content Addressable Memory / 188

- 9.1 Protocol Layers One and Two / 193
- 9.2 Protocol Layers Three and Four / 194
- 9.3 Physical Media / 197
- 9.4 Channel Coding / 198
- 9.5 8B10B Coding / 203
- 9.6 Error Detection / 207
- 9.7 Checksum / 208
- 9.8 Cyclic Redundancy Check / 209
- 9.9 Ethernet / 215

Chapter 10	Logic Design and Finite State Machines	.221
------------	--	------

- 10.1 Hardware Description Languages / 221
- 10.2 CPU Support Logic / 227
- 10.3 Clock Domain Crossing / 233
- 10.4 Finite State Machines / 237
- 10.5 FSM Bus Control / 239
- 10.6 FSM Optimization / 243
- 10.7 Pipelining / 245

- 11.1 Custom and Programmable Logic / 249
- 11.2 GALs and PALs / 252 11.3 CPLDs / 255
- 11.4 FPGAs / 257

PART 3 Analog Basics for Digital Systems

Chapter 12 Electrical Fundamentals	
12.1 Basic Circuits / 267	
12.2 Loop and Node Analysis / 268	
12.3 Resistance Combination / 271	
12.4 Capacitors / 272	
12.5 Capacitors as AC Elements / 274	
12.6 Inductors / 276	
12.7 Nonideal RLC Models / 276	
12.8 Frequency Domain Analysis / 279	
12.9 Lowpass and Highpass Filters / 283	
12.10 Transformers / 288	
Chapter 13 Diodes and Transistors	

14.1 The	14 Operational Amplifiers	
	acteristics of Real Op-amps / 316	
	width Limitations / 324	
14.4 Input	Resistance / 325	
14.5 Sum	nation Amplifier Circuits / 328	
14.6 Activ	e Filters / 331	
14.7 Com	parators and Hysteresis / 333	
Chapter	15 Analog Interfaces for Digital Systems	
-	ersion between Analog and Digital Domains / 339	
	ling Rate and Aliasing / 341	
a set our set of the set	Circuits / 345	
	Circuits / 348	
15.5 Filter	s in Data Conversion Systems / 350	
PART	Digital System Design in Practice	
Chanter	16 Clock Distribution	
-	al Oscillators and Ceramic Resonators / 355	•
	Skew Clock Buffers / 357	
	Delay Buffers: The PLL / 360	
	ency Synthesis / 364	
	/-Locked Loops / 366	
	ze-Synchronous Clocking / 367	
Chapter	17 Voltage Regulation and Power Distribution	
	ge Regulation Basics / 372	
	nal Analysis / 374	
	r Diodes and Shunt Regulators / 376	
	sistors and Discrete Series Regulators / 379	
	ur Regulators / 382	
	ching Regulators / 386	
17.7 Powe	ar Distribution / 389	
17.8 Elect	rical Integrity / 392	
Chapter	18 Signal Integrity	
•	smission Lines / 398	•
	ination / 403	
	stalk / 408	
	romagnetic Interference / 410	
	nding and Electromagnetic Compatibility / 413	
	rostatic Discharge / 415	
Chapter	19 Designing for Success	•••
19.1 Prac	ical Technologies / 420	
	ed Circuit Boards / 422	

X

19.3 Manually Wired Circuits / 425
19.4 Microprocessor Reset / 428
19.5 Design for Debug / 429
19.6 Boundary Scan / 431
19.7 Diagnostic Software / 433
19.8 Schematic Capture and Spice / 436
19.9 Test Equipment / 440

Appendix A Further Education......443

Index 445