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1 Introduction and preliminaries

Partial metric is one of the generalizations of metric was introduced by Matthews[2]
in 1992 to study denotational semantics of data flow networks. In fact, partial metric
spaces constitute a suitable framework to model several distinguished examples of the
theory of computation and also to model metric spaces via domain theory [1, 4, 6, 7, 8,
11]. Recently, many researchers have obtained fixed, common fixed and coupled fixed
point results on partial metric spaces and ordered partial metric spaces [3, 5, 6, 9, 10].
In [12] Harjani et al. proved the following fixed point theorem in partially ordered
metric spaces.

Theorem 1.1. ([12]). Let (X,≤) be a ordered set and suppose that there exists a
metric d in X such that (X, d) is a complete metric space. Let T : X → X be a
non-decreasing mapping such that

d(Tx, Ty) ≤ α
d(x, Tx)d(y, Ty)

d(x, y)
+ βd(x, y) for x, y ∈ X, x ≥ y, x 6= y,

Also, assume either T is continuous or X has the property that (xn) is a nondecreasing
sequence in X such that xn → x, then x = sup{xn}. If there exists x0 ∈ X such that
x0 ≤ Tx0, then T has a fixed point.

In this paper we extend the result of Harjani, Lopez and Sadarangani [12] to the case
of partial metric spaces. An example is considered to illustrate our obtained results.
First, we recall some definitions of partial metric space and some of their properties
[2, 3, 4, 5, 10].

Definition 1.2. A partial metric on a nonempty set X is a function p : X ×X → R+

such that for all x, y, z ∈ X :

(P1) p(x, y) = p(y, x) (symmetry);

(P2) if 0 ≤ p(x, x) = p(x, y) = p(y, y) then x = y (equality);



(P3) p(x, x) ≤ p(x, y) (small self-distances);

(P4) p(x, z) + p(y, y) ≤ p(x, y) + p(y, z) (triangularity); for all x, y, z ∈ X.

For a partial metric p on X, the function dp : X × X → R+ given by dp(x, y) =
2p(x, y)−p(x, x)−p(y, y) is a (usual) metric onX. Each partial metric p onX generates
a T0 topology τp onX with a base of the family of open p-balls {Bp(x, ε) : x ∈ X, ε > 0},
where Bp(x, ε) = {y ∈ X : p(x, y) < p(x, x) + ε} for all x ∈ X and ε > 0.

Lemma 1.3. Let (X, p) be a partial metric space. Then

(i) A sequence {xn} is a Cauchy sequence in the PMS (X, p) if and only if {xn} is
Cauchy in a metric space (X, dp).

(ii) A PMS (X, p) is complete if and only if a metric space (X, dp) is complete. More-
over,

lim
n→∞

dp(x, xn) = 0⇔ p(x, x) = lim
n→∞

p(x, xn) = lim
n,m→∞

p(xn, xm).

2 Main Results

Theorem 2.1. Let (X,≤) be a partially ordered set and suppose that there exists a
partial metric p in X such that (X, p) is a complete partial metric space. Let T : X → X
be a continuous and nondecreasing mapping such that

p(Tx, Ty) ≤ αp(x, Tx)p(y, Ty)

p(x, y)
+ βp(x, y), for x, y ∈ X, x ≥ y, x 6= y, (1)

with α > 0, β > 0, α + β < 1. If there exists x0 ∈ X with x0 ≤ Tx0, then T has fixed
point z ∈ X and p(z, z) = 0.

Proof. If Tx0 = x0, then the proof is done. Suppose that x0 ≤ Tx0.
Since T is a nondecreasing mapping, we obtain by induction that

x0 ≤ Tx0 ≤ T 2x0 ≤ · · · ≤ T nx0 ≤ T n+1x0 ≤ · · ·

Put xn+1 = Txn. If there exists n ≥ 1 such that xn+1 = xn, then from xn+1 = Txn = xn,
xn is a fixed point. Suppose that xn+1 6= xn for n ≥ 1. That is xn and xn−1 are
comparable, we get, for n ≥ 1,

p(xn+1, xn) = p(Txn, Txn−1)

≤ αp(xn, Txn)p(xn−1, Txn−1)

p(xn, xn−1)
+ βp(xn, xn−1)

≤ αp(xn, xn+1) + βp(xn, xn−1)

The last inequality gives us

p(xn+1, xn) ≤ kp(xn, xn−1), k =
β

1− α
< 1

· · ·
≤ knp(x1, x0).
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p(xn+1, xn) ≤ knp(x1, x0). (2)

Moreover, by the triangular inequality, we have, for m ≥ n,

p(xm, xn) ≤ p(xm, xm−1) + · · ·+ p(xn+1, xn)−
m−n−1∑

i=1

p(xm−k, xm−k)

≤ [km−1 + · · ·+ kn]p(x1, x0)

= kn
1− km−n

1− k
p(x1, x0)

≤ kn

1− k
p(x1, x0).

Hence, limn,m→∞ p(xn, xm) = 0, that is, {xn} is a Cauchy sequence in (X, p). By Lemma
1.3, {xn} is also Cauchy in (X, dp). In addition, since (X, p) is complete, (X, dp) is also
complete. Thus there exists z ∈ X such that xn → z in (X, dp); moreover, by Lemma
1.3,

p(z, z) = lim
n→∞

p(z, xn) = lim
n,m→∞

p(xn, xm) = 0.

Given that T is continuous in (X, p). Therefore, Txn → Tz in (X, p).

i.e., p(Tz, Tz) = lim
n→∞

p(Tz, Txn) = lim
n,m→∞

p(Txn, Txm).

But, p(Tz, Tz) = limn,m→∞ p(Txn, Txm) = limn,m→∞ p(xn+1, xm+1) = 0.
We will show next that z is the fixed point of T.

p(Tz, z) ≤ p(Tz, Txn) + p(Txn, z)− p(Txn, Txn).

As n→∞, we obtain p(Tz, z) ≤ 0. Thus, p(Tz, z) = 0.
Hence p(z, z) = p(Tz, Tz) = p(Tz, z) = 0. Therefore, by (P2) we get Tz = z and
p(z, z) = 0 which completes the proof.

In what follows we prove that Theorem 2.1 is still valid for T not necessarily con-
tinuous, assuming X has the property that

(xn) is a nondecreasing sequence in X such that xn → x,then x = sup{xn}. (3)

Theorem 2.2. Let (X,≤) be a partially ordered set and suppose that there exists a
partial metric p in X such that (X, p) is a complete partial metric space. Assume that
X satisfies (3) in (X, p). Let T : X → X be a nondecreasing mapping such that

p(Tx, Ty) ≤ αp(x, Tx)p(y, Ty)

p(x, y)
+ βp(x, y), for x, y ∈ X, x ≥ y, x 6= y, (4)

with α > 0, β > 0, α + β < 1. If there exists x0 ∈ X with x0 ≤ Tx0 , then T has fixed
point z ∈ X and p(z, z) = 0.

Proof. Following the proof of Theorem 2.1, we only have to check that Tz = z. As
(xn) is a nondecreasing sequence in X and xn → z, then, by (3), z = sup{xn}. In
particularly, xn ≤ z for all n ∈ N.
Since T is a nondecreasing mapping, then Txn ≤ Tz, for all n ∈ N or, equivalently,
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xn+1 ≤ Tz for all n ∈ N. Moreover, as x0 < x1 ≤ Tz and z = sup{xn}, we get z ≤ Tz.
Suppose that z < Tz. Using a similar argument that in the proof of Theorem 2.1 for
x0 ≤ Tx0, we obtain that {T nz} is a nondecreasing sequence such that

p(y, y) = lim
n→∞

p(T nz, y) = lim
m,n→∞

p(T nz, Tmz) = 0 for some y ∈ X. (5)

By the assumption of (3) , we have y = sup{T nz}.
Moreover, from x0 ≤ z, we get xn = T nx0 ≤ T nz for n ≥ 1 and xn < T nz for n ≥ 1
because xn ≤ z < Tz ≤ T nz for n ≥ 1.
As xn and T nz are comparable and distinct for n ≥ 1, applying the contractive condi-
tion we get

p(T n+1z, xn+1) = p(T (T nz), Txn)

≤ αp(T nz, T n+1z)p(xn, Txn)

p(T nz, xn)
+ βp(T nz, xn),

p(T n+1z, xn+1) ≤
αp(T nz, T n+1z)p(xn, xn+1)

p(T nz, xn)
+ βp(T nz, xn). (6)

From limn→∞ p(xn, z) = limn→∞ p(T
nz, y) = 0, we have

lim
n→∞

p(T nz, xn) = p(y, z). (7)

As, n→∞ in (6) and using that (2) and (7), we obtain

p(y, z) ≤ βp(y, z).

As β < 1, p(y, z) = 0. Hence p(z, z) = p(y, y) = p(y, z) = 0. Therefore, by (P2) y = z.
Particularly, y = z = sup{T nz} and, consequently, Tz ≤ z and this is a contradiction.
Hence, we conclude that z = Tz and p(z, z) = 0.

Example 2.3. Let X = [0,∞) endowed with the usual partial metric p defined by
p : X ×X → R+ with p(x, y) = max{x, y}, for all x, y ∈ X. We consider the ordered
relation in X as follows

x 4 y ⇔ p(x, x) = p(x, y)⇔ x = max{x, y} ⇐ y ≤ x

where ≤ be the usual ordering.

It is clear that (X,4) is totally ordered. The partial metric space (X, p) is complete
because (X, dp) is complete. Indeed, for any x, y ∈ X,

dp(x, y) = 2p(x, y)− p(x, x)− p(y, y) = 2max{x, y} − (x+ y) = |x− y|

Thus, (X, dp) = ([0,∞), |.|) is the usual metric space, which is complete.

Let T : X → X be given by T (x) =
x

2
, x ≥ 0. The function T is continuous on (X, p).

Indeed, let {xn} be a sequence converging to x in (X, p), then limn→∞max{xn, x} =
limn→∞ p(xn, x) = p(x, x) = x and

lim
n→∞

p(Txn, Tx) = lim
n→∞

max{Txn, Tx} = lim
n→∞

max{xn, x}
2

=
x

2
= p(Tx, Tx) (8)

4



that is {T (xn)} converges to T (x) in (X, p). Since xn → x and by the definition T we
have, limn→∞ dp(xn, x) = 0 and

lim
n→∞

dp(Txn, Tx) = 0. (9)

From (8) and (9) we get T is continuous on (X, p). Any x, y ∈ X are comparable, so
for example we take x 4 y, and then p(x, x) = p(x, y), so y ≤ x. Since T (y) ≤ T (x),
so T (x) 4 T (y), giving that T is non-decreasing with respect to 4 . In particular, for
any x 4 y, we have

p(x, y) = x, p(Tx, Ty) = Tx =
x

2
, p(x, Tx) = x, p(y, Ty) = y.

Now we have to show that T satisfies the inequality (1) For any x, y ∈ X with x 4 y
and x 6= y, we have

p(Tx, Ty) =
x

2
and

αp(x, Tx)p(y, Ty)

p(x, y)
+ βp(x, y) =

αxy

x
+ βx.

Therefore, choose β ≥ 1
2
and α+β < 1, then (1) holds. All the hypotheses are satisfied,

so T has a unique fixed point in X which is 0 and p(0, 0) = 0.
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Tóm tắt

Định lý điểm bất động sử dụng một điều kiện co
trong không gian metric được sắp thứ tự bộ phận

Nguyễn Thanh Mai

Trường Đại học Khoa học - Đại học Thái Nguyên

Bài báo này giới thiệu định lý điểm bất động sử dụng một điều kiện co trong không
gian metric được sắp thứ tự bộ phận.

Từ khoá: Không gian metric, điểm bất động, tập có thứ tự.
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