A FINITENESS RESULT FOR ASSOCIATED PRIMES
OF CERTAIN EXT-MODULES
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Abstract '. Using some properties of unconditioned M —sequences in dimension > s, we
give a finiteness result for the set U Assp(Exth(R/I™, M)).

neN

1 Introduction

Throughout this paper, let R be a Noetherian commutative ring, let M be a finitely generated
R—module, and A an Artinian R—module.

For an ideal I of R, it was shown in [B] that the two sequences of associated primes
Assp(M/I"M) and Assg(I"M/I""'M),n=1,2,...
eventually become constant for large n. Sharp [Sh| proved the dual result for Artinian mod-
ules: Attg(0:4 1) and Attg ((O ‘A [")/(O ‘A I"‘l)) do not depend on n for n large. Starting
from the observation that M/I"M = Tory (R/I", M) and 0 :4 I" = Ext%(R/I", A) for any

n, Melkersson and Schenzel [MS] extended the above results as follows: For any given integer
1 > 0, the sequences

Assg (Torj'(R/I",M)) and Attg (Exty(R/I",A)),n=1,2,...

become independent of n for large n. Melkersson and Schenzel [MS] also asked whether the
set Assp (Exty(R/I™, M)) is independent of n for large n.

In fact, U Assp (Extly(R/I", M)) is not a finite set in general, and therefore the set
neN

Assy (Ext’é(R/I",M )) depends on n for n large. Indeed, Katzman [Ka, Corollary 1.3]

gave an example of a Noetherian local ring (R, m) with two elements z,y € m such that

Assg (H(2I7y)R(R)) is an infinite set. Therefore the set U Assg (Exty(R/(z,y)", R)) is infi-

neN
nite.

For convenience, for a subset T" of Spec R and an integer i > 0, we set

(T);:={peT : dimR/p =1i};
(T)si :={peT : dimR/p >i}.
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For an integer ¢ > 0, an ideal [ of R, and a system a = (a4, ..., ax) of elements in R, we set

THI,M): = U Assp (Exti(R/I", M));

neN

T'(a,M):= |J Assp(Extp(R/(al',... ap*),M)).

In this paper, we prove the following finiteness result for the sets T°(I, M) and T*(a, M).

Theorem 1.1. Let s > 0 and r > 1 be integers. Assume that dim(Supp(H:(M))) < s for all

i <r. Then for any system of generators a = (a1, ...,ax) of I and for all integerst < r, the
t

sets (Tt([,M))

and <Tt(g, M)) are contained in the finite set U Assp Exto(R/I, M).

=0

Theorem 1.2. Let s > 0 and r > 1 be integers. Assume that dim(Supp(H:(M))) < s

forallt <r. Let xq,...,x, € I be a sequence which is at the same time an unconditioned

M —sequence in dimension > s and an unconditioned [—filter reqular sequence with respect

to M (such sequences ezist by Proposition 2.5). Then for any system of generators a =

(a1,...,a;) of I and for all integers t < r, the sets (Tt(l, M)) and (Tt(g, M)) are
>s

>s

>s >s

contained in the finite set

<AssR(M/(x1,...,:ct)M)> U (OASSR(M/(xl,...,xZ-)M)>.

>s+1 s

2 Unconditioned M —sequences in dimension > s

Definition 2.1. Let s > 0 be an integer, let x1,...,x, € R be a sequence. We say that
x1,...,%, is an M—sequence in dimension > s if xy,...,x, is a poor M,—sequence for all
p € Spec(R) with dim(R/p) > s.

Observe that zy,...,x, is an M—sequence in dimension > s if and only if x; ¢ p for all
pe (ASSR(M/(:El,...,Ii_l)M)> and all i =1,...,7r.
>s+1
Assume that R is local. Then x4, ..., x, is an M —sequence in dimension > 0 if and only
if it is a filter regular sequence with respect to M in sense of [Cst]. Moreover, x,...,x, is
an M —sequence in dimension > 1 if and only if it is a generalized regular sequence with
respect to M in sense of [Nh].

Reminder 2.2. (a) Let I be an ideal. A sequence z1,...,z, € I is called an [—filter reqular
sequence with respect to M if xy,...,x, is an My—sequence for all p € Spec(R) \ Var(!).
It is equivalent to say that z; ¢ p for all p € Assgr(M/(z1,...,x;-1)M) \ Var(l) and all
1=1,...,7



(b) (cf. [NS, 3.4}, [Kh, 2.1]). If xq,..., 2, is an [—filter regular sequence with respect to

M then '
] . .
i) = § o) i<
! HI7"(HT (M)), ifj>r
I (z1,ezr)R ) J=T
Definition 2.3. A sequence z1,...,x, € R is called an unconditioned M —sequence in di-
mension > s if x,y,...,Ts) is an M—sequence in dimension > s for all permutations
o € S,. Similarly, a sequence x1,...,x, € I is called an unconditioned I—filter reqular se-
quence with respect to M if x,(1),...,%s(y is an [—filter regular sequence with respect to

M for all permutations o € S,.
Lemma 2.4. Let s > 0 be an integer, let I be an ideal of R.

(a) Let r > 0 be an integer. Then dim(Supp(H4(M))) < s for all i < r if and only if
there exists an M —sequence in dimension > s of length r in I.

(b) If dim(M/IM) > s then each M—sequence in dimension > s in I may be extended
to a maximal M—sequence in dimension > s in I. Moreover, all maximal M —sequences
i dimension > s in I have the same length, and this common length is equal to the least
integer i such that dim(Supp(HH(M))) > s.

(c¢) If dim(M/IM) < s then there exists an M —sequence in dimension > s in I of length
n for any integer n > 0.

Proof. (a). Assume that dim(Supp(H%(M))) < s for all i < r. We prove by induction on
r that there is a sequence xq,...,x, € I which is an M —sequence in dimension > s. Let
r > 1. Then dim(Supp(H)(M))) < s. Hence I Z p for all p € (Assg M) Therefore

>s+1°
there exists an element x; € [ which is M —regular in dimension > s. This proves the
case 1 = 1. Let r > 1 and set 1 = . Then dim(0 :); z) < s. From the exact sequence

0—0:yz—M— M/(0:) ) — 0 we get an exact sequence
Hy (M) — Hy(M/(0 2 @) — H™(0 2y @)

for all ¢ > 0. As dim(0 :py z) < s, we have dim(Supp(H:(0 :p z))) < s for all i > 0.
Therefore, by our hypothesis, dim(Supp(H:(M/(0 :ar 7)) < s for all « < r. From the exact
sequence
0—M/(0:pyx) — M— M/xM—0

we get an exact sequence Hi(M)— Hi(M/xM)— Hi™(M/(0 :p ) for all i > 0. So,
dim(Supp(H4(M/xM))) < s for all i < r—1. By induction, there exists a sequence s, . . ., T,
in [ which is an M /xM —sequence in dimension > s. So, x1,...,x, is an M —sequence in
dimension > s in [I.

Conversely, assume 1, ..., x, is an M —sequence in dimension > s in I. Let p € Spec R

x Ty . : ;

such that dim(R/p) > s. Then Tl’ .-, I8 .apoor My—sequence in I,,. So, Hjp (M,) =0,
i.e. p ¢ Supp(H:(M)) for all i < r. Therefore dim(Supp H:(M))) < s for all i < r.

(b). Since dim(M/IM) > s, there is a maximal ideal m such that dim(M,,/I M) > s. Note
that each M —sequence in dimension > s in [ is an My—sequence in dimension > s in [ Ry,.



As dim(My,/IMy,) > s, each My—sequence in dimension > s in IRy, is a part of a system
of parameters of My,. Therefore the length of an M —sequence in dimension > s in [ is at
most dim M, — s — 1. So, there is a common bound on the lengths of all M —sequences in
dimension > s which consist of elements in I. Therefore, each M —sequence in dimension
> s in [ may be extended to a maximal M —sequence in dimension > s in .

Let x1,...,z, and y,...,y: be maximal M —sequences in dimension > s in I. Assume
that r # ¢, say r < t. By (a), dim(Supp H}(M))) < s for all ¢ < r. Similar as in the proof of
(a), it follows by induction on k that dim(Supp(HH(M/(z1,...,zx)M))) < sforalli <r—k
and all k < r. Thus dim(HY(M/(x1,...,x,)M)) < s. Therefore there is an element in I which
is M/(xq,...,x,)M—regular in dimension > s. This is a contradiction to the maximality
of the sequence (x1,...,z,). So, all maximal M —sequences in dimension > s in [ have the
same length and by (a) this length has the stated value.

(c) is clear. O

Proposition 2.5. Let s > 0 and r > 1 be integers, and let I C R be an ideal. If
dim(Supp(H4(M))) < s for all i < r then there is a sequence xi,...,x, in I which is
at the same time an unconditioned M —sequence in dimension > s and an unconditioned
I—filter regular sequence with respect to M.

Proof. We proceed by induction on r. Let r = 1. Set
Cy = (Assg M)>erl U (ASSR M\ Var([)).

Since dim(HY(M)) < s, it follows that I ¢ p for all p € (Assg M) Sy
Avoidance, there exists an element x; € I such that z; ¢ p for all_p € (. It is clear that x
is an unconditioned M —sequence in dimension > s and an unconditioned [—filter regular
sequence w.r.t. M.

Therefore, by Prime

Let » > 1 and assume that the result is true for » — 1. Then there exists a sequence
Z1,...,%._1 in I which is an unconditioned M —sequence in dimension > s and an uncon-
ditioned I—filter regular sequence w.r.t. M. By Lemma 2.4 and by the assumption, for
any subset J of {1,...,r — 1}, the sequence (z;);c; can be extended to an M —sequence in
dimension > s in I of length . Therefore for any subset J of {1,...,r — 1}, there exists
an (M/ .. ;x;M)—regular element in dimension > s in [. It follows that I < p for all
p e (ASSR (M/ dics ZL‘]M)> and all subsets J of {1,...,r — 1}. By Prime Avoidance,

>s+1
we can choose an element z, € I such that x, ¢ p for all p € C,., where

C, ;:( U AssR(M/ijM)>ZS+1U( U AssR(M/ijM)\Var(I)>.

JC{1,....,r—1} jeJ JC{1,....r—1} jed

We first show that xzi,...,z, is an unconditioned M —sequence in dimension > s. Let
o € S, be a permutation of 1,...,7. Assume that z,a),..., %) is not an M —sequence
in dimension > s. Let n € {1,...,7} be the least integer such that z,@),...,Zs@m) is
not an M —sequence in dimension > s. Then r = o(i) for some i < n by our choice



of z,, and there is some p € <ASSR(M/(IU(1), e ,xa(n_l))M)> such that z,u,,) € p.

>s+1
xo‘ xo‘ n .
SO Tg(1), -+, Tom) € P and 1(1),..., 1( ) is not a regular sequence w.r.t. M,. There-
Lo Lo(i— To(i Ton) To@) .
fore (1),..., ( 1), (H),...,#,J is not a regular sequence w.r.t. M,. Set

1 1 1 1 1
J={{jeN : j<nj#i}. As dim(R/p) > s, we know that (@) is a regular
Jj€J

r To(i) .
sequence w.r.t. M,. Therefore xT = % is not a regular element w.r.t. M,,/Zma(j)Mp.

jeJ
So, there exists q € Spec(R) with g C p such that % € q Ry € Assp, (Mp/ZxU(j)Mp). It
jed
follows that x,. € q € (ASSR(M/ Z xU(j)M)> C C,. This gives a contradiction.
ies >s+1
Finally, we need to prove that xy,..., 2, is an unconditioned [—filter regular sequence
w.r.t. M. Assume that z,),...,Zs) is not an [—filter regular sequence w.r.t. M
for some o € §,. Let n be the least integer such that z,(),...,Zs@) is not an I—filter
regular sequence w.r.t. M. By our choice of z,, we have r = (i) for some i < n
and there exists some p € Assp(M/(To1);-- -, Tom-1))M) \ Var(l) such that z,u,) € p.

'Z‘O' ‘/EO' n .
SO T(1), -+, Tom) € P and 1(1),..., 1( ) is not a regular sequence w.r.t. M,. There-

Lo To(i— To(i Ton) Lo@) .
fore 1(1),..., (1 1), (1“),...,%,% is not a regular sequence w.r.t. M,. Set

J:={jeN : j<n,j#i}. Asp ¢ Var(l), we know that (@) is a regular sequence
jeJ

r To(i) .
w.r.t. M,. Therefore xT = % is not a regular element w.r.t. MP/ZIBU(J-)MP. So, there

jeg
exists some q € Spec(R) with g C p such that % € qR, € Asspg, (Mp/ZxU(j)Mp). It
jeJ
follows that =, € q € (ASSR(M/ Z%(j)M)> \ Var(I) C C,, a contradiction. O

- >s+1
jeJ -

Proposition 2.6. Let s be a non-negative integer. Let xy,...,x; be an unconditioned
M —sequence in dimension > s. Then

( U Assp (M/(a7, ... ,x?ﬂM))

ni,...,nt €N

_ (ASSR(M/(xl,...,It)M))>

>s >s

In particular, the set ( U Assg (M/(xﬁ“, . ,xfﬂM)) is finite.
>s
n1,...,nt EN -

Proof. We prove the result by induction on ¢. Let t = 1 and we write ;1 = z. We will show
by induction on n; = n that (ASSR(M/JU”M)> C Assg(M/xM). The case n = 1 is clear.
>s

5



Let n > 1 and assume that the result is true for n — 1. Let p € <ASSR(M/1‘nM)> . Then

>s

p Ry € Assg, (M,/x"M,). If dim(R/p) > s then x is a regular element w.r.t. M, and therefore
p R, € Assg, (M,/xM,). It follows that p € Assp(M/xM). Assume that dim(R/p) = s. From
the exact sequence

0— 2" 'M/2"M — M /2" M — M /2" 'M — 0,

we have p € Assgr(M/z"'M) U Assg(z" ' M/x"M). If p € Assg(M /2"~ M) then by in-
duction p € Assgr(M/xM). So, assume that p € Assg(z"'M/xz"M). Consider the exact

sequence
0—(z"M 1y 2" JaM — M/aM — "' M /2" M — 0.

Set K = (x"M x”_l)/xM. Assume that p ¢ Supp(K'). Then the above exact sequence

shows that (M/ZBM)p = (x”’lM/:E"M)p. Since p € Assg(z" 1M /x" M), it follows that p €

Assp(M/xM). So, we assume that p € Supp(K). Note that for any q € Supp(M) satistying

dim(R/q) > s, we have K; = 0 as = is a poor regular element w.r.t. M,. So dim(K) < s.

Hence p is a minimal element in Supp(K’), and hence p € Assg(K) C Assg(M/zM). So, the
result is true for ¢t = 1.

Let t > 1 and assume that the result is true for ¢ — 1. Let nq,...,n; be arbitrary positive
integers. Since x; is an M/ (2}, ..., z}*]" )M —regular element in dimension > s, we get by

the case t = 1 that
(ASSR (M/ (2}, ... ,;1:2”)M)> C Assp (M/(2}*, ... 27" 2) M).
>s

Since z1,...,x; 1 is an unconditioned M /x;M—sequence in dimension > s, we have by
induction that

<ASSR (M/(x’l“, . ,x?ﬁ‘ll,ﬁt)M)>>s = <ASSR (M/(xt,xa“, .. ,a:?ﬁ‘f)M))
C Assg (M/(21,...,2)M).

>s

This proves our claim. O]

In general, a permutation of an M —sequence in dimension > s is not an M —sequence
in dimension > s. In particular, a permutation of a generalized regular sequence is not
necessarily a generalized regular sequence. For example, let R = k[[x1, zo, 3, 24, x5]] be
the ring of power series in 5 variables over a field k. Let M = R/(x1) N (x2, x3,x4). Then
dim M = 4 and x5, x5 is a generalized regular sequence w.r.t M, but s, x5 is not a generalized
regular sequence w.r.t M. This fact shows that Lemma 2.2(i),(ii) of [Nh] is not correct. It
follows that the proof of [Nh, 3.1] is not correct, too. The next corollary is an improvement
and also a correction of [Nh, 3.1].

Corollary 2.7. Assume that xi,...,x; is an unconditioned generalized reqular sequence
w.r.t. M. Then
U Assp (M@, 27" )M) \ Max R C Assp(M/(x1, ..., 2,)M)).
ni,...,ntEN



In particular, if in addition R is local, then U Assp (M/(2*, ..., 2} )M) is a finite
set.

Proof. The proof is immediate by setting s = 1 in Proposition 2.6. O]

3 Finiteness results

Remark 3.1. Let I C R be an ideal with depth(/, M) = t. Then it is well known that
Assp(Exth(R/I, M)) = Assp(HY(M)).

t—1
Lemma 3.2. Let t be a positive integer. Set Py, = U Supp (Ext%(R/I, M)) Then
i=0

Assg (ExtR(R/I",M)) U P, = Assg (ExtRh(R/(a}",...,a*),M)) UP,
= Assp (ExtR(R/I, M)) U P, = Assp(H}(M)) U P,

for any system of generators (ai,...,ax) of I and all positive integers n,ny, ..., n.

Proof. Let p € Supp(M) such that p ¢ P,. Then for any i < t we have
Exty, (Rp/IRy, My) = (Exty(R/I, M)), = 0.
Therefore depth(I Ry, M,) > t. Let n,ny, ..., ny be positive integers. It is clear that
depth(I" Ry, M,) = depth(I Ry, M,) = depth((al?, ..., a )Ry, My).
We first suppose that depth(I Ry, M,) > t. Then the R,—modules Extﬁ%p (Ry/I" Ry, M,),
Exty (Rp/(a)", ..., a*)Ry, My), Exty (Rp/IRy, M,), Hip (M,) are zero. So, p does not

belong to any of the four sets Assp (EX'C%(R/[”,M)), Assp (Ext'}i(R/(a’fl, o ,aZ’“),M)),
Assp (Exty(R/I,M)) and Assg(H}(M)).

Assume that depth(I Ry, M) = t. Since rad(I) = rad(I") = rad((a7", ..., a*)R), we have
by Remark 3.1 that

Assg, (Exty (Rp/I"Ry, My)) = Assg, (Hing, (M,)) = Assg, (Hig, (My))
= Assg, (Ex‘cﬁ%p (Rp/IR,, My)),
Assg, (Extfqp (Ry/(a, ..., ap*)Ry, My)) = Assp, (H}Rp(]\/[p)).
It follows that
p € Assp(Exth(R/I", M) < p € Assp(HY(M)) < p € Assp(Exth(R/I, M)
& p € Assp(Extly(R/(al, ... a*), M).

Now the result follows immediately. m



The next lemma follows easily by induction on ¢ using Remark 3.1 and Lemma 3.2.

Lemma 3.3. For any integer t > 0 we have
t

U ( U Supp (EX’G%(R/I”,M))) = USupp (Extih(R/I,M)) = USupp (Hj(M)).

=0 neN
It should be mentloned that the equalities AssR (Ext%(R/I, M))UP, = Assg(H{(M))UP,

in Lemma 3.2 and U Supp (Ext(R/I,M)) = U Supp (Hj(M)) in Lemma 3.3 have been
1=0 1=0
proved by Cuong-Hoang [CH].

t—1
Proof of Theorem 1.1. Let ¢t < r be a non-negative integer. Set P, = U Supp(Ext%(R/I, M)).

1=0
t—1

Then P, = U Supp(H;(M)) by Lemma 3.3. Therefore, by our assumption, dim(R/p) < s
i=0

for all p € P. Now, let p € (T'(1,M)). U (T"*(a, M)). . If dim(R/p) > s then p ¢ P,. So,
we get by Lemma 3.2 that p € Assp(Exth(R/I, M)).
Let dim(R/p) = s. It follows by Lemma 3.2 that p € (Ass(ExttR(R/J, M) U Pt> I

p ¢ Assp(Exty(R/I, M)) then p € P, and hence p is a minimal prime ideal of Exty(R/I, M)
for some ¢ < t. Therefore p € Assgp(Extw(R/I, M)) for some i < t. Thus, T(I, M) and
t

T*(a, M) are subsets of U Ass(Extio(R/I, M)). O
i=0

Proof of Theorem 1.2. Let ¢t < r be a non-negative integer. Let p € ( (I, M) o U

(T"(a, M)). . Leti < t.Since dim(Supp(Hj(M))) < s, any prime ideal in (Supp )>

is minimal in Supp(H}(M)) and hence associated to Hi(M). It follows that

(Supp(H}(M)))ZS = <ASSR(H}(M))> for all © < t.

So, we get by Lemma 3.2 and Lemma 3.3 that p € (UASSR H’(M))) U(AssR(Ht(M))>

>s
As x1,...,z, € I is an unconditioned [—filter regular sequence w.r.t. M, we have by 52
flhat H’(M) Hy(H{,, . r(M)) foralli=1,... ¢ Therefore, for cach i — =1,...,t we
ave
Assp Hi(M) C Assg (ngl 77777 xi)R(M)) - U Assp (M/(z}, ..., 2})M).
As xq,...,x, is an unconditioned M —sequence in d?rerlfension > s, we get by Proposition 2.6
that
( U Assp (M/ (2}, ... ,xf)M))s = <ASSR(M/(ZE1, . ,:L‘i)M)>S
nenN



foralle=1,...,¢, and

( | Assk (M/(a}, .. ,wf)M))

neN

— (ASSR (M/(@1,... ’xt)M))

>s+1 >s+1

If dim(R/p) > sthent =r and p € Assg Hi(M), hence p € (ASSR(M/(:vl, . ,$t)M)>
If dim(R/p) = s then

>et1

t

= | (Asse/(ar....20)0))

s ) s
=0

t
peJ (Assn(H(0)))
=0
Now the result follows immediately. O]

Replacing s by 1 in Theorems 1,2 and on use of Lemma 3.2 we get the following result.

Corollary 3.4. Let r > 0 be an integer such that dim(Supp(Hi(M))) <1 for alli < r. Let
a=(ay,...,a) be a system of generators of I. Then

(a) For any integer t < r, the sets T"(I, M) and T"(a, M) are contained in the set
¢ t—1
|J Assr(Exty(R/1, M) U (MaX(R) nlJ supp(H;'(M))).
i=0 i=0

(b) Let xy,...,x, € I be an unconditioned generalized reqular sequence with respect to M
which is an unconditioned I—filter reqular sequence with respect to M (such sequences exist
by Proposition 2.5). Then for any integert < r, the sets T*(I, M) and T*(a, M) are contained

in the set (ASSR(M/(ZL’l, e ,xt)M)> U (LJASSR(M/(xl, e ,:v,)M))l U Max(R).

>2
Remark 3.5. Let R be local. In Khashyarmanesh [Kh], it is shown that if Hi(M) is of

finite support for all i < r then the set (T"(1,M))., ={p € T"(I,M) : dimR/p > 1} is
finite. Corollary 3.4 shows that even 77 (I, M) is a finite set.

Setting s = 0 in Theorems 1,2 we get the following result.

Corollary 3.6. Let r > 0 be an integer such that dim(Supp(H:(M))) <0 for all i < r. Let
a=(ay,...,a) be a system of generators of I. Then

(a) For any integer t < r, the sets T*(I, M) and T"(a, M) are contained in the finite set
t

| Assr(Exti(R/I, M)).
=0
(b) Let xy,...,x, € I be an unconditioned filter reqular sequence with respect to M which

is an unconditioned [—filter reqular sequence with respect to M (such sequences exist by
Proposition 2.5). Then for any integer t < r, the sets T*(I, M) and T*(a, M) are contained
t

U (JAssp(M/(x1, ..., 2)M).

in the finite set (ASSR(M/(Il, . ,xt)M)>

>1
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