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Abstract 1. Using some properties of unconditioned M−sequences in dimension > s, we

give a finiteness result for the set
⋃
n∈N

AssR(Exti
R(R/In, M)).

1 Introduction

Throughout this paper, let R be a Noetherian commutative ring, let M be a finitely generated
R−module, and A an Artinian R−module.

For an ideal I of R, it was shown in [B] that the two sequences of associated primes

AssR(M/InM) and AssR(InM/In+1M), n = 1, 2, . . .

eventually become constant for large n. Sharp [Sh] proved the dual result for Artinian mod-
ules: AttR(0 :A In) and AttR

(
(0 :A In)

/
(0 :A In−1)

)
do not depend on n for n large. Starting

from the observation that M/InM ∼= TorR
0 (R/In, M) and 0 :A In ∼= Ext0

R(R/In, A) for any
n, Melkersson and Schenzel [MS] extended the above results as follows: For any given integer
i ≥ 0, the sequences

AssR

(
TorR

i (R/In, M)
)

and AttR

(
Exti

R(R/In, A)
)
, n = 1, 2, . . .

become independent of n for large n. Melkersson and Schenzel [MS] also asked whether the
set AssR

(
Exti

R(R/In, M)
)

is independent of n for large n.

In fact,
⋃
n∈N

AssR

(
Exti

R(R/In, M)
)

is not a finite set in general, and therefore the set

AssR

(
Exti

R(R/In, M)
)

depends on n for n large. Indeed, Katzman [Ka, Corollary 1.3]
gave an example of a Noetherian local ring (R,m) with two elements x, y ∈ m such that

AssR

(
H2

(x,y)R(R)
)

is an infinite set. Therefore the set
⋃
n∈N

AssR

(
Ext2

R(R/(x, y)n, R)
)

is infi-

nite.

For convenience, for a subset T of Spec R and an integer i ≥ 0, we set

(T )i : = {p ∈ T : dim R/ p = i};
(T )≥i : = {p ∈ T : dim R/ p ≥ i}.
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For an integer i ≥ 0, an ideal I of R, and a system a = (a1, . . . , ak) of elements in R, we set

T i(I, M) : =
⋃
n∈N

AssR

(
Exti

R(R/In, M)
)
;

T i(a, M) : =
⋃

n1,...,nk∈N

AssR

(
Exti

R(R/(an1
1 , . . . , ank

k ), M)
)
.

In this paper, we prove the following finiteness result for the sets T i(I, M) and T i(a, M).

Theorem 1.1. Let s ≥ 0 and r ≥ 1 be integers. Assume that dim(Supp(H i
I(M))) ≤ s for all

i < r. Then for any system of generators a = (a1, . . . , ak) of I and for all integers t ≤ r, the

sets
(
T t(I, M)

)
≥s

and
(
T t(a, M)

)
≥s

are contained in the finite set
t⋃

i=0

AssR Exti
R(R/I,M).

Theorem 1.2. Let s ≥ 0 and r ≥ 1 be integers. Assume that dim(Supp(H i
I(M))) ≤ s

for all i < r. Let x1, . . . , xr ∈ I be a sequence which is at the same time an unconditioned
M−sequence in dimension > s and an unconditioned I−filter regular sequence with respect
to M (such sequences exist by Proposition 2.5). Then for any system of generators a =

(a1, . . . , ak) of I and for all integers t ≤ r, the sets
(
T t(I,M)

)
≥s

and
(
T t(a, M)

)
≥s

are

contained in the finite set(
AssR(M/(x1, . . . , xt)M)

)
≥s+1

∪
( t⋃

i=0

AssR(M/(x1, . . . , xi)M)
)

s
.

2 Unconditioned M−sequences in dimension > s

Definition 2.1. Let s ≥ 0 be an integer, let x1, . . . , xr ∈ R be a sequence. We say that
x1, . . . , xr is an M−sequence in dimension > s if x1, . . . , xr is a poor Mp−sequence for all
p ∈ Spec(R) with dim(R/ p) > s.

Observe that x1, . . . , xr is an M−sequence in dimension > s if and only if xi /∈ p for all

p ∈
(

AssR(M/(x1, . . . , xi−1)M)
)
≥s+1

and all i = 1, . . . , r.

Assume that R is local. Then x1, . . . , xr is an M−sequence in dimension > 0 if and only
if it is a filter regular sequence with respect to M in sense of [Cst]. Moreover, x1, . . . , xr is
an M−sequence in dimension > 1 if and only if it is a generalized regular sequence with
respect to M in sense of [Nh].

Reminder 2.2. (a) Let I be an ideal. A sequence x1, . . . , xr ∈ I is called an I−filter regular
sequence with respect to M if x1, . . . , xr is an Mp−sequence for all p ∈ Spec(R) \ Var(I).
It is equivalent to say that xi /∈ p for all p ∈ AssR(M/(x1, . . . , xi−1)M) \ Var(I) and all
i = 1, . . . , r.
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(b) (cf. [NS, 3.4], [Kh, 2.1]). If x1, . . . , xr is an I−filter regular sequence with respect to
M then

Hj
I (M) =

{
Hj

(x1,...,xr)R(M), if j < r

Hj−r
I (Hr

(x1,...,xr)R(M)), if j ≥ r.

Definition 2.3. A sequence x1, . . . , xr ∈ R is called an unconditioned M−sequence in di-
mension > s if xσ(1), . . . , xσ(r) is an M−sequence in dimension > s for all permutations
σ ∈ Sr. Similarly, a sequence x1, . . . , xr ∈ I is called an unconditioned I−filter regular se-
quence with respect to M if xσ(1), . . . , xσ(r) is an I−filter regular sequence with respect to
M for all permutations σ ∈ Sr.

Lemma 2.4. Let s ≥ 0 be an integer, let I be an ideal of R.

(a) Let r > 0 be an integer. Then dim(Supp(H i
I(M))) ≤ s for all i < r if and only if

there exists an M−sequence in dimension > s of length r in I.

(b) If dim(M/IM) > s then each M−sequence in dimension > s in I may be extended
to a maximal M−sequence in dimension > s in I. Moreover, all maximal M−sequences
in dimension > s in I have the same length, and this common length is equal to the least
integer i such that dim(Supp(H i

I(M))) > s.

(c) If dim(M/IM) ≤ s then there exists an M−sequence in dimension > s in I of length
n for any integer n > 0.

Proof. (a). Assume that dim(Supp(H i
I(M))) ≤ s for all i < r. We prove by induction on

r that there is a sequence x1, . . . , xr ∈ I which is an M−sequence in dimension > s. Let
r ≥ 1. Then dim(Supp(H0

I (M))) ≤ s. Hence I 6⊆ p for all p ∈
(
AssR M

)
≥s+1

. Therefore

there exists an element x1 ∈ I which is M−regular in dimension > s. This proves the
case r = 1. Let r > 1 and set x1 = x. Then dim(0 :M x) ≤ s. From the exact sequence
0−→ 0 :M x−→M −→M/(0 :M x)−→ 0 we get an exact sequence

H i
I(M)−→H i

I(M/(0 :M x))−→H i+1
I (0 :M x)

for all i ≥ 0. As dim(0 :M x) ≤ s, we have dim(Supp(H i
I(0 :M x))) ≤ s for all i ≥ 0.

Therefore, by our hypothesis, dim(Supp(H i
I(M/(0 :M x))) ≤ s for all i < r. From the exact

sequence
0−→M/(0 :M x)−→M −→M/xM −→ 0

we get an exact sequence H i
I(M)−→H i

I(M/xM)−→H i+1
I (M/(0 :M x)) for all i ≥ 0. So,

dim(Supp(H i
I(M/xM))) ≤ s for all i < r−1. By induction, there exists a sequence x2, . . . , xr

in I which is an M/xM−sequence in dimension > s. So, x1, . . . , xr is an M−sequence in
dimension > s in I.

Conversely, assume x1, . . . , xr is an M−sequence in dimension > s in I. Let p ∈ Spec R

such that dim(R/ p) > s. Then
x1

1
, . . . ,

xr

1
is a poor Mp−sequence in Ip. So, H i

IRp
(Mp) = 0,

i.e. p /∈ Supp(H i
I(M)) for all i < r. Therefore dim(Supp H i

I(M))) ≤ s for all i < r.

(b). Since dim(M/IM) > s, there is a maximal ideal m such that dim(Mm/IMm) > s. Note
that each M−sequence in dimension > s in I is an Mm−sequence in dimension > s in IRm.
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As dim(Mm/IMm) > s, each Mm−sequence in dimension > s in IRm is a part of a system
of parameters of Mm. Therefore the length of an M−sequence in dimension > s in I is at
most dim Mm − s − 1. So, there is a common bound on the lengths of all M−sequences in
dimension > s which consist of elements in I. Therefore, each M−sequence in dimension
> s in I may be extended to a maximal M−sequence in dimension > s in I.

Let x1, . . . , xr and y1, . . . , yt be maximal M−sequences in dimension > s in I. Assume
that r 6= t, say r < t. By (a), dim(Supp H i

I(M))) ≤ s for all i ≤ r. Similar as in the proof of
(a), it follows by induction on k that dim(Supp(H i

I(M/(x1, . . . , xk)M))) ≤ s for all i ≤ r−k
and all k ≤ r. Thus dim(H0

I (M/(x1, . . . , xr)M)) ≤ s. Therefore there is an element in I which
is M/(x1, . . . , xr)M−regular in dimension > s. This is a contradiction to the maximality
of the sequence (x1, . . . , xr). So, all maximal M−sequences in dimension > s in I have the
same length and by (a) this length has the stated value.

(c) is clear.

Proposition 2.5. Let s ≥ 0 and r ≥ 1 be integers, and let I ⊆ R be an ideal. If
dim(Supp(H i

I(M))) ≤ s for all i < r then there is a sequence x1, . . . , xr in I which is
at the same time an unconditioned M−sequence in dimension > s and an unconditioned
I−filter regular sequence with respect to M.

Proof. We proceed by induction on r. Let r = 1. Set

C1 :=
(
AssR M

)
≥s+1

∪
(

AssR M \ Var(I)
)
.

Since dim(H0
I (M)) ≤ s, it follows that I 6⊆ p for all p ∈

(
AssR M

)
≥s+1

. Therefore, by Prime

Avoidance, there exists an element x1 ∈ I such that x1 /∈ p for all p ∈ C1. It is clear that x1

is an unconditioned M−sequence in dimension > s and an unconditioned I−filter regular
sequence w.r.t. M.

Let r > 1 and assume that the result is true for r − 1. Then there exists a sequence
x1, . . . , xr−1 in I which is an unconditioned M−sequence in dimension > s and an uncon-
ditioned I−filter regular sequence w.r.t. M . By Lemma 2.4 and by the assumption, for
any subset J of {1, . . . , r − 1}, the sequence (xj)j∈J can be extended to an M−sequence in
dimension > s in I of length r. Therefore for any subset J of {1, . . . , r − 1}, there exists
an (M/

∑
j∈J xjM)−regular element in dimension > s in I. It follows that I 6⊆ p for all

p ∈
(

AssR

(
M/

∑
j∈J xjM

))
≥s+1

and all subsets J of {1, . . . , r − 1}. By Prime Avoidance,

we can choose an element xr ∈ I such that xr /∈ p for all p ∈ Cr, where

Cr :=
( ⋃

J⊆{1,...,r−1}

AssR(M/
∑
j∈J

xjM)
)
≥s+1

∪
( ⋃

J⊆{1,...,r−1}

AssR(M/
∑
j∈J

xjM) \ Var(I)
)
.

We first show that x1, . . . , xr is an unconditioned M−sequence in dimension > s. Let
σ ∈ Sr be a permutation of 1, . . . , r. Assume that xσ(1), . . . , xσ(r) is not an M−sequence
in dimension > s. Let n ∈ {1, . . . , r} be the least integer such that xσ(1), . . . , xσ(n) is
not an M−sequence in dimension > s. Then r = σ(i) for some i < n by our choice
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of xr, and there is some p ∈
(

AssR(M/(xσ(1), . . . , xσ(n−1))M)
)
≥s+1

such that xσ(n) ∈ p .

So xσ(1), . . . , xσ(n) ∈ p and
xσ(1)

1
, . . . ,

xσ(n)

1
is not a regular sequence w.r.t. Mp. There-

fore
xσ(1)

1
, . . . ,

xσ(i−1)

1
,
xσ(i+1)

1
, . . . ,

xσ(n)

1
,
xσ(i)

1
is not a regular sequence w.r.t. Mp. Set

J := {j ∈ N : j ≤ n, j 6= i}. As dim(R/ p) > s, we know that
(xσ(j)

1

)
j∈J

is a regular

sequence w.r.t. Mp. Therefore
xr

1
=

xσ(i)

1
is not a regular element w.r.t. Mp/

∑
j∈J

xσ(j)Mp.

So, there exists q ∈ Spec(R) with q ⊆ p such that
xr

1
∈ q Rp ∈ AssRp

(
Mp/

∑
j∈J

xσ(j)Mp

)
. It

follows that xr ∈ q ∈
(

AssR(M/
∑
j∈J

xσ(j)M)
)
≥s+1

⊆ Cr. This gives a contradiction.

Finally, we need to prove that x1, . . . , xr is an unconditioned I−filter regular sequence
w.r.t. M . Assume that xσ(1), . . . , xσ(r) is not an I−filter regular sequence w.r.t. M
for some σ ∈ Sr. Let n be the least integer such that xσ(1), . . . , xσ(n) is not an I−filter
regular sequence w.r.t. M . By our choice of xr, we have r = σ(i) for some i < n
and there exists some p ∈ AssR(M/(xσ(1), . . . , xσ(n−1))M) \ Var(I) such that xσ(n) ∈ p.

So xσ(1), . . . , xσ(n) ∈ p and
xσ(1)

1
, . . . ,

xσ(n)

1
is not a regular sequence w.r.t. Mp. There-

fore
xσ(1)

1
, . . . ,

xσ(i−1)

1
,
xσ(i+1)

1
, . . . ,

xσ(n)

1
,
xσ(i)

1
is not a regular sequence w.r.t. Mp. Set

J := {j ∈ N : j ≤ n, j 6= i}. As p /∈ Var(I), we know that
(xσ(j)

1

)
j∈J

is a regular sequence

w.r.t. Mp. Therefore
xr

1
=

xσ(i)

1
is not a regular element w.r.t. Mp/

∑
j∈J

xσ(j)Mp. So, there

exists some q ∈ Spec(R) with q ⊆ p such that
xr

1
∈ q Rp ∈ AssRp

(
Mp/

∑
j∈J

xσ(j)Mp

)
. It

follows that xr ∈ q ∈
(

AssR(M/
∑
j∈J

xσ(j)M)
)
≥s+1

\ Var(I) ⊆ Cr, a contradiction.

Proposition 2.6. Let s be a non-negative integer. Let x1, . . . , xt be an unconditioned
M−sequence in dimension > s. Then( ⋃

n1,...,nt∈N

AssR

(
M/(xn1

1 , . . . , xnt
t )M

))
≥s

=
(

AssR(M/(x1, . . . , xt)M))
)
≥s

.

In particular, the set
( ⋃

n1,...,nt∈N

AssR

(
M/(xn1

1 , . . . , xnt
t )M

))
≥s

is finite.

Proof. We prove the result by induction on t. Let t = 1 and we write x1 = x. We will show

by induction on n1 = n that
(

AssR(M/xnM)
)
≥s
⊆ AssR(M/xM). The case n = 1 is clear.

5



Let n > 1 and assume that the result is true for n − 1. Let p ∈
(

AssR(M/xnM)
)
≥s

. Then

p Rp ∈ AssRp(Mp/x
nMp). If dim(R/p) > s then x is a regular element w.r.t. Mp and therefore

p Rp ∈ AssRp(Mp/xMp). It follows that p ∈ AssR(M/xM). Assume that dim(R/p) = s. From
the exact sequence

0−→xn−1M/xnM −→M/xnM −→M/xn−1M −→ 0,

we have p ∈ AssR(M/xn−1M) ∪ AssR(xn−1M/xnM). If p ∈ AssR(M/xn−1M) then by in-
duction p ∈ AssR(M/xM). So, assume that p ∈ AssR(xn−1M/xnM). Consider the exact
sequence

0−→(xnM :M xn−1)
/
xM −→M/xM −→xn−1M/xnM −→ 0.

Set K = (xnM :M xn−1)
/
xM. Assume that p /∈ Supp(K). Then the above exact sequence

shows that
(
M/xM

)
p
∼=

(
xn−1M/xnM

)
p
. Since p ∈ AssR(xn−1M/xnM), it follows that p ∈

AssR(M/xM). So, we assume that p ∈ Supp(K). Note that for any q ∈ Supp(M) satisfying
dim(R/q) > s, we have Kq = 0 as x is a poor regular element w.r.t. Mq. So dim(K) ≤ s.
Hence p is a minimal element in Supp(K), and hence p ∈ AssR(K) ⊆ AssR(M/xM). So, the
result is true for t = 1.

Let t > 1 and assume that the result is true for t− 1. Let n1, . . . , nt be arbitrary positive
integers. Since xt is an M/(xn1

1 , . . . , x
nt−1

t−1 )M−regular element in dimension > s, we get by
the case t = 1 that(

AssR

(
M/(xn1

1 , . . . , xnt
t )M

))
≥s
⊆ AssR

(
M/(xn1

1 , . . . , x
nt−1

t−1 , xt)M
)
.

Since x1, . . . , xt−1 is an unconditioned M/xtM−sequence in dimension > s, we have by
induction that(

AssR

(
M/(xn1

1 , . . . , x
nt−1

t−1 , xt)M
))

≥s
=

(
AssR

(
M/(xt, x

n1
1 , . . . , x

nt−1

t−1 )M
))

≥s

⊆ AssR

(
M/(x1, . . . , xt)M

)
.

This proves our claim.

In general, a permutation of an M−sequence in dimension > s is not an M−sequence
in dimension > s. In particular, a permutation of a generalized regular sequence is not
necessarily a generalized regular sequence. For example, let R = k[[x1, x2, x3, x4, x5]] be
the ring of power series in 5 variables over a field k. Let M = R/(x1) ∩ (x2, x3, x4). Then
dim M = 4 and x5, x2 is a generalized regular sequence w.r.t M , but x2, x5 is not a generalized
regular sequence w.r.t M . This fact shows that Lemma 2.2(i),(ii) of [Nh] is not correct. It
follows that the proof of [Nh, 3.1] is not correct, too. The next corollary is an improvement
and also a correction of [Nh, 3.1].

Corollary 2.7. Assume that x1, . . . , xt is an unconditioned generalized regular sequence
w.r.t. M. Then⋃

n1,...,nt∈N

AssR

(
M/(xn1

1 , . . . , xnt
t )M

)
\Max R ⊆ AssR(M/(x1, . . . , xt)M)).
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In particular, if in addition R is local, then
⋃

n1,...,nt∈N

AssR

(
M/(xn1

1 , . . . , xnt
t )M

)
is a finite

set.

Proof. The proof is immediate by setting s = 1 in Proposition 2.6.

3 Finiteness results

Remark 3.1. Let I ⊆ R be an ideal with depth(I, M) = t. Then it is well known that

AssR(Extt
R(R/I,M)) = AssR(H t

I(M)).

Lemma 3.2. Let t be a positive integer. Set Pt =
t−1⋃
i=0

Supp
(
Exti

R(R/I,M)
)
. Then

AssR

(
Extt

R(R/In, M)
)
∪ Pt = AssR

(
Extt

R(R/(an1
1 , . . . , ank

k ), M)
)
∪ Pt

= AssR

(
Extt

R(R/I,M)
)
∪ Pt = AssR(H t

I(M)) ∪ Pt

for any system of generators (a1, . . . , ak) of I and all positive integers n, n1, . . . , nk.

Proof. Let p ∈ Supp(M) such that p /∈ Pt. Then for any i < t we have

Exti
Rp

(Rp/IRp, Mp) ∼=
(
Exti

R(R/I,M)
)

p
= 0.

Therefore depth(IRp, Mp) ≥ t. Let n, n1, . . . , nk be positive integers. It is clear that

depth(InRp, Mp) = depth(IRp, Mp) = depth((an1
1 , . . . , ank

k )Rp, Mp).

We first suppose that depth(IRp, Mp) > t. Then the Rp−modules Extt
Rp

(Rp/I
nRp, Mp),

Extt
Rp

(Rp/(a
n1
1 , . . . , ank

k )Rp, Mp), Extt
Rp

(Rp/IRp, Mp), H t
IRp

(Mp) are zero. So, p does not

belong to any of the four sets AssR

(
Extt

R(R/In, M)
)
, AssR

(
Extt

R(R/(an1
1 , . . . , ank

k ), M)
)
,

AssR

(
Extt

R(R/I,M)
)

and AssR(H t
I(M)).

Assume that depth(IRp, Mp) = t. Since rad(I) = rad(In) = rad((an1
1 , . . . , ank

k )R), we have
by Remark 3.1 that

AssRp

(
Extt

Rp
(Rp/I

nRp, Mp)
)

= AssRp

(
H t

InRp
(Mp)

)
= AssRp

(
H t

IRp
(Mp)

)
= AssRp

(
Extt

Rp
(Rp/IRp, Mp)

)
,

AssRp

(
Extt

Rp
(Rp/(a

n1
1 , . . . , ank

k )Rp, Mp)
)

= AssRp

(
H t

IRp
(Mp)

)
.

It follows that

p ∈ AssR(Extt
R(R/In, M) ⇔ p ∈ AssR(H t

I(M)) ⇔ p ∈ AssR(Extt
R(R/I,M)

⇔ p ∈ AssR(Extt
R(R/(an1

1 , . . . , ank
k ), M).

Now the result follows immediately.
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The next lemma follows easily by induction on t using Remark 3.1 and Lemma 3.2.

Lemma 3.3. For any integer t ≥ 0 we have

t⋃
i=0

( ⋃
n∈N

Supp
(
Exti

R(R/In, M)
))

=
t⋃

i=0

Supp
(
Exti

R(R/I,M)
)

=
t⋃

i=0

Supp
(
H i

I(M)
)
.

It should be mentioned that the equalities AssR

(
Extt

R(R/I,M)
)
∪Pt = AssR(H t

I(M))∪Pt

in Lemma 3.2 and
t⋃

i=0

Supp
(
Exti

R(R/I,M)
)

=
t⋃

i=0

Supp
(
H i

I(M)
)

in Lemma 3.3 have been

proved by Cuong-Hoang [CH].

Proof of Theorem 1.1. Let t ≤ r be a non-negative integer. Set Pt =
t−1⋃
i=0

Supp(Exti
R(R/I,M)).

Then Pt =
t−1⋃
i=0

Supp(H i
I(M)) by Lemma 3.3. Therefore, by our assumption, dim(R/ p) ≤ s

for all p ∈ Pt. Now, let p ∈
(
T t(I, M)

)
≥s
∪

(
T t(a, M)

)
≥s

. If dim(R/ p) > s then p /∈ Pt. So,

we get by Lemma 3.2 that p ∈ AssR(Extt
R(R/I,M)).

Let dim(R/ p) = s. It follows by Lemma 3.2 that p ∈
(

Ass(Extt
R(R/I,M) ∪ Pt

)
s
. If

p /∈ AssR(Extt
R(R/I,M)) then p ∈ Pt, and hence p is a minimal prime ideal of Exti

R(R/I,M)
for some i < t. Therefore p ∈ AssR(Exti

R(R/I,M)) for some i < t. Thus, T t(I, M) and

T t(a, M) are subsets of
t⋃

i=0

Ass(Exti
R(R/I,M)).

Proof of Theorem 1.2. Let t ≤ r be a non-negative integer. Let p ∈
(
T t(I,M)

)
≥s
∪(

T t(a, M)
)
≥s

. Let i < t. Since dim(Supp(H i
I(M))) ≤ s, any prime ideal in

(
Supp(H i

I(M))
)
≥s

is minimal in Supp(H i
I(M)) and hence associated to H i

I(M). It follows that(
Supp(H i

I(M))
)
≥s

=
(

AssR(H i
I(M))

)
s
for all i < t.

So, we get by Lemma 3.2 and Lemma 3.3 that p ∈
( t−1⋃

i=0

AssR(H i
I(M))

)
s
∪

(
AssR(H t

I(M))
)
≥s

.

As x1, . . . , xr ∈ I is an unconditioned I−filter regular sequence w.r.t. M , we have by 2.2
that H i

I(M) ∼= H0
I (H i

(x1,...,xi)R
(M)) for all i = 1, . . . , t. Therefore, for each i = 1, . . . , t, we

have
AssR H i

I(M) ⊆ AssR

(
H i

(x1,...,xi)R
(M)

)
⊆

⋃
n∈N

AssR

(
M/(xn

1 , . . . , x
n
i )M

)
.

As x1, . . . , xr is an unconditioned M−sequence in dimension > s, we get by Proposition 2.6
that ( ⋃

n∈N

AssR

(
M/(xn

1 , . . . , x
n
i )M

))
s
=

(
AssR(M/(x1, . . . , xi)M)

)
s
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for all i = 1, . . . , t, and( ⋃
n∈N

AssR

(
M/(xn

1 , . . . , x
n
t )M

))
≥s+1

=
(

AssR

(
M/(x1, . . . , xt)M

))
≥s+1

.

If dim(R/ p) > s then t = r and p ∈ AssR H t
I(M), hence p ∈

(
AssR(M/(x1, . . . , xt)M)

)
≥s+1

.

If dim(R/ p) = s then

p ∈
t⋃

i=0

(
AssR(H i

I(M))
)

s
=

t⋃
i=0

(
AssR(M/(x1, . . . , xi)M)

)
s
.

Now the result follows immediately.

Replacing s by 1 in Theorems 1,2 and on use of Lemma 3.2 we get the following result.

Corollary 3.4. Let r > 0 be an integer such that dim(Supp(H i
I(M))) ≤ 1 for all i < r. Let

a = (a1, . . . , ak) be a system of generators of I. Then

(a) For any integer t ≤ r, the sets T t(I, M) and T t(a, M) are contained in the set

t⋃
i=0

AssR(Exti
R(R/I,M)) ∪

(
Max(R) ∩

t−1⋃
i=0

Supp(H i
I(M))

)
.

(b) Let x1, . . . , xr ∈ I be an unconditioned generalized regular sequence with respect to M
which is an unconditioned I−filter regular sequence with respect to M (such sequences exist
by Proposition 2.5). Then for any integer t ≤ r, the sets T t(I, M) and T t(a, M) are contained

in the set
(

AssR(M/(x1, . . . , xt)M)
)
≥2

∪
( t⋃

i=0

AssR(M/(x1, . . . , xi)M)
)

1
∪Max(R).

Remark 3.5. Let R be local. In Khashyarmanesh [Kh], it is shown that if H i
I(M) is of

finite support for all i < r then the set
(
T r(I, M)

)
≥2

= {p ∈ T r(I, M) : dim R/ p > 1} is

finite. Corollary 3.4 shows that even T r(I, M) is a finite set.

Setting s = 0 in Theorems 1,2 we get the following result.

Corollary 3.6. Let r > 0 be an integer such that dim(Supp(H i
I(M))) ≤ 0 for all i < r. Let

a = (a1, . . . , ak) be a system of generators of I. Then

(a) For any integer t ≤ r, the sets T t(I, M) and T t(a, M) are contained in the finite set
t⋃

i=0

AssR(Exti
R(R/I,M)).

(b) Let x1, . . . , xr ∈ I be an unconditioned filter regular sequence with respect to M which
is an unconditioned I−filter regular sequence with respect to M (such sequences exist by
Proposition 2.5). Then for any integer t ≤ r, the sets T t(I,M) and T t(a, M) are contained

in the finite set
(

AssR(M/(x1, . . . , xt)M)
)
≥1

∪
t⋃

i=0

AssR(M/(x1, . . . , xi)M).
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