A FINITENESS RESULT FOR ASSOCIATED PRIMES OF CERTAIN EXT-MODULES

MARKUS BRODMANN and LE THANH NHAN

Abstract ¹. Using some properties of unconditioned M-sequences in dimension > s, we give a finiteness result for the set $\bigcup_{n \in \mathbb{N}} \operatorname{Ass}_R(\operatorname{Ext}^i_R(R/I^n, M))$.

1 Introduction

Throughout this paper, let R be a Noetherian commutative ring, let M be a finitely generated R-module, and A an Artinian R-module.

For an ideal I of R, it was shown in [B] that the two sequences of associated primes

 $\operatorname{Ass}_R(M/I^n M)$ and $\operatorname{Ass}_R(I^n M/I^{n+1} M), n = 1, 2, \dots$

eventually become constant for large n. Sharp [Sh] proved the dual result for Artinian modules: Att_R(0 :_A I^n) and Att_R ((0 :_A I^n)/(0 :_A I^{n-1})) do not depend on n for n large. Starting from the observation that $M/I^n M \cong \operatorname{Tor}_0^R(R/I^n, M)$ and 0 :_A $I^n \cong \operatorname{Ext}_R^0(R/I^n, A)$ for any n, Melkersson and Schenzel [MS] extended the above results as follows: For any given integer $i \ge 0$, the sequences

Ass_R (Tor^R_i($R/I^n, M$)) and Att_R (Extⁱ_R($R/I^n, A$)), n = 1, 2, ...

become independent of n for large n. Melkersson and Schenzel [MS] also asked whether the set $\operatorname{Ass}_R(\operatorname{Ext}^i_R(R/I^n, M))$ is independent of n for large n.

In fact, $\bigcup_{n \in \mathbb{N}} \operatorname{Ass}_R \left(\operatorname{Ext}_R^i(R/I^n, M) \right)$ is not a finite set in general, and therefore the set

Ass_R (Ext^{*i*}_R($R/I^n, M$)) depends on n for n large. Indeed, Katzman [Ka, Corollary 1.3] gave an example of a Noetherian local ring (R, \mathfrak{m}) with two elements $x, y \in \mathfrak{m}$ such that Ass_R ($H^2_{(x,y)R}(R)$) is an infinite set. Therefore the set $\bigcup_{n\in\mathbb{N}}$ Ass_R (Ext²_R($R/(x,y)^n, R$)) is infi-

nite.

For convenience, for a subset T of Spec R and an integer $i \ge 0$, we set

$$(T)_i := \{ \mathfrak{p} \in T : \dim R/\mathfrak{p} = i \}; (T)_{>i} := \{ \mathfrak{p} \in T : \dim R/\mathfrak{p} \ge i \}.$$

¹Key words and phrases: Supports of local cohomology modules, associated primes, filter regular sequences, M-sequences in dimension > s.

²⁰⁰⁰ Subject Classification: 13D45, 13E05.

The second author was partially supported by the Swiss National Science Foundation (Project No 20-103491/1).

For an integer $i \ge 0$, an ideal I of R, and a system $\underline{a} = (a_1, \ldots, a_k)$ of elements in R, we set

$$T^{i}(I, M) := \bigcup_{n \in \mathbb{N}} \operatorname{Ass}_{R} \left(\operatorname{Ext}_{R}^{i}(R/I^{n}, M) \right);$$
$$T^{i}(\underline{a}, M) := \bigcup_{n_{1}, \dots, n_{k} \in \mathbb{N}} \operatorname{Ass}_{R} \left(\operatorname{Ext}_{R}^{i}(R/(a_{1}^{n_{1}}, \dots, a_{k}^{n_{k}}), M) \right).$$

In this paper, we prove the following finiteness result for the sets $T^{i}(I, M)$ and $T^{i}(a, M)$.

Theorem 1.1. Let $s \ge 0$ and $r \ge 1$ be integers. Assume that $\dim(\operatorname{Supp}(H_I^i(M))) \le s$ for all i < r. Then for any system of generators $\underline{a} = (a_1, \ldots, a_k)$ of I and for all integers $t \le r$, the sets $(T^t(I, M))_{\ge s}$ and $(T^t(\underline{a}, M))_{\ge s}$ are contained in the finite set $\bigcup_{i=0}^t \operatorname{Ass}_R \operatorname{Ext}_R^i(R/I, M)$.

Theorem 1.2. Let $s \ge 0$ and $r \ge 1$ be integers. Assume that $\dim(\operatorname{Supp}(H_I^i(M))) \le s$ for all i < r. Let $x_1, \ldots, x_r \in I$ be a sequence which is at the same time an unconditioned M-sequence in dimension > s and an unconditioned I-filter regular sequence with respect to M (such sequences exist by Proposition 2.5). Then for any system of generators $\underline{a} =$ (a_1, \ldots, a_k) of I and for all integers $t \le r$, the sets $(T^t(I, M))_{\ge s}$ and $(T^t(\underline{a}, M))_{\ge s}$ are contained in the finite set

$$\left(\operatorname{Ass}_R(M/(x_1,\ldots,x_t)M)\right)_{\geq s+1} \cup \left(\bigcup_{i=0}^t \operatorname{Ass}_R(M/(x_1,\ldots,x_i)M)\right)_s.$$

2 Unconditioned M-sequences in dimension > s

Definition 2.1. Let $s \ge 0$ be an integer, let $x_1, \ldots, x_r \in R$ be a sequence. We say that x_1, \ldots, x_r is an *M*-sequence in dimension > s if x_1, \ldots, x_r is a poor $M_{\mathfrak{p}}$ -sequence for all $\mathfrak{p} \in \operatorname{Spec}(R)$ with $\dim(R/\mathfrak{p}) > s$.

Observe that x_1, \ldots, x_r is an M-sequence in dimension > s if and only if $x_i \notin \mathfrak{p}$ for all $\mathfrak{p} \in \left(\operatorname{Ass}_R(M/(x_1, \ldots, x_{i-1})M) \right)_{>s+1}$ and all $i = 1, \ldots, r$.

Assume that R is local. Then x_1, \ldots, x_r is an M-sequence in dimension > 0 if and only if it is a filter regular sequence with respect to M in sense of [Cst]. Moreover, x_1, \ldots, x_r is an M-sequence in dimension > 1 if and only if it is a generalized regular sequence with respect to M in sense of [Nh].

Reminder 2.2. (a) Let I be an ideal. A sequence $x_1, \ldots, x_r \in I$ is called an I-filter regular sequence with respect to M if x_1, \ldots, x_r is an $M_{\mathfrak{p}}$ -sequence for all $\mathfrak{p} \in \operatorname{Spec}(R) \setminus \operatorname{Var}(I)$. It is equivalent to say that $x_i \notin \mathfrak{p}$ for all $\mathfrak{p} \in \operatorname{Ass}_R(M/(x_1, \ldots, x_{i-1})M) \setminus \operatorname{Var}(I)$ and all $i = 1, \ldots, r$.

(b) (cf. [NS, 3.4], [Kh, 2.1]). If x_1, \ldots, x_r is an *I*-filter regular sequence with respect to M then

$$H_{I}^{j}(M) = \begin{cases} H_{(x_{1},...,x_{r})R}^{j}(M), & \text{if } j < r \\ H_{I}^{j-r}(H_{(x_{1},...,x_{r})R}^{r}(M)), & \text{if } j \ge r. \end{cases}$$

Definition 2.3. A sequence $x_1, \ldots, x_r \in R$ is called an *unconditioned* M-sequence in dimension > s if $x_{\sigma(1)}, \ldots, x_{\sigma(r)}$ is an M-sequence in dimension > s for all permutations $\sigma \in S_r$. Similarly, a sequence $x_1, \ldots, x_r \in I$ is called an *unconditioned* I-filter regular sequence with respect to M if $x_{\sigma(1)}, \ldots, x_{\sigma(r)}$ is an I-filter regular sequence with respect to M for all permutations $\sigma \in S_r$.

Lemma 2.4. Let $s \ge 0$ be an integer, let I be an ideal of R.

(a) Let r > 0 be an integer. Then $\dim(\operatorname{Supp}(H^i_I(M))) \leq s$ for all i < r if and only if there exists an M-sequence in dimension > s of length r in I.

(b) If $\dim(M/IM) > s$ then each M-sequence in dimension > s in I may be extended to a maximal M-sequence in dimension > s in I. Moreover, all maximal M-sequences in dimension > s in I have the same length, and this common length is equal to the least integer i such that $\dim(\operatorname{Supp}(H^i_I(M))) > s$.

(c) If $\dim(M/IM) \leq s$ then there exists an M-sequence in dimension > s in I of length n for any integer n > 0.

Proof. (a). Assume that $\dim(\operatorname{Supp}(H_I^i(M))) \leq s$ for all i < r. We prove by induction on r that there is a sequence $x_1, \ldots, x_r \in I$ which is an M-sequence in dimension > s. Let $r \geq 1$. Then $\dim(\operatorname{Supp}(H_I^0(M))) \leq s$. Hence $I \not\subseteq \mathfrak{p}$ for all $\mathfrak{p} \in (\operatorname{Ass}_R M)_{\geq s+1}$. Therefore there exists an element $x_1 \in I$ which is M-regular in dimension > s. This proves the case r = 1. Let r > 1 and set $x_1 = x$. Then $\dim(0 :_M x) \leq s$. From the exact sequence $0 \longrightarrow 0 :_M x \longrightarrow M / (0 :_M x) \longrightarrow 0$ we get an exact sequence

$$H_I^i(M) \longrightarrow H_I^i(M/(0:_M x)) \longrightarrow H_I^{i+1}(0:_M x)$$

for all $i \ge 0$. As dim $(0:_M x) \le s$, we have dim $(\text{Supp}(H_I^i(0:_M x))) \le s$ for all $i \ge 0$. Therefore, by our hypothesis, dim $(\text{Supp}(H_I^i(M/(0:_M x))) \le s$ for all i < r. From the exact sequence

$$0 \longrightarrow M/(0:_M x) \longrightarrow M \longrightarrow M/xM \longrightarrow 0$$

we get an exact sequence $H_I^i(M) \longrightarrow H_I^i(M/xM) \longrightarrow H_I^{i+1}(M/(0:_M x))$ for all $i \ge 0$. So, dim(Supp $(H_I^i(M/xM))) \le s$ for all i < r-1. By induction, there exists a sequence x_2, \ldots, x_r in I which is an M/xM-sequence in dimension > s. So, x_1, \ldots, x_r is an M-sequence in dimension > s in I.

Conversely, assume x_1, \ldots, x_r is an M-sequence in dimension > s in I. Let $\mathfrak{p} \in \operatorname{Spec} R$ such that $\dim(R/\mathfrak{p}) > s$. Then $\frac{x_1}{1}, \ldots, \frac{x_r}{1}$ is a poor $M_\mathfrak{p}$ -sequence in $I_\mathfrak{p}$. So, $H^i_{IR_\mathfrak{p}}(M_\mathfrak{p}) = 0$, i.e. $\mathfrak{p} \notin \operatorname{Supp}(H^i_I(M))$ for all i < r. Therefore $\dim(\operatorname{Supp} H^i_I(M))) \leq s$ for all i < r.

(b). Since dim(M/IM) > s, there is a maximal ideal \mathfrak{m} such that dim $(M_{\mathfrak{m}}/IM_{\mathfrak{m}}) > s$. Note that each M-sequence in dimension > s in I is an $M_{\mathfrak{m}}$ -sequence in dimension > s in $IR_{\mathfrak{m}}$.

As dim $(M_{\mathfrak{m}}/IM_{\mathfrak{m}}) > s$, each $M_{\mathfrak{m}}$ -sequence in dimension > s in $IR_{\mathfrak{m}}$ is a part of a system of parameters of $M_{\mathfrak{m}}$. Therefore the length of an M-sequence in dimension > s in I is at most dim $M_{\mathfrak{m}} - s - 1$. So, there is a common bound on the lengths of all M-sequences in dimension > s which consist of elements in I. Therefore, each M-sequence in dimension > s in I may be extended to a maximal M-sequence in dimension > s in I.

Let x_1, \ldots, x_r and y_1, \ldots, y_t be maximal M-sequences in dimension > s in I. Assume that $r \neq t$, say r < t. By (a), dim(Supp $H_I^i(M)$)) $\leq s$ for all $i \leq r$. Similar as in the proof of (a), it follows by induction on k that dim(Supp $(H_I^i(M/(x_1, \ldots, x_k)M))) \leq s$ for all $i \leq r - k$ and all $k \leq r$. Thus dim $(H_I^0(M/(x_1, \ldots, x_r)M)) \leq s$. Therefore there is an element in I which is $M/(x_1, \ldots, x_r)M$ -regular in dimension > s. This is a contradiction to the maximality of the sequence (x_1, \ldots, x_r) . So, all maximal M-sequences in dimension > s in I have the same length and by (a) this length has the stated value.

(c) is clear.

Proposition 2.5. Let $s \ge 0$ and $r \ge 1$ be integers, and let $I \subseteq R$ be an ideal. If $\dim(\operatorname{Supp}(H_I^i(M))) \le s$ for all i < r then there is a sequence x_1, \ldots, x_r in I which is at the same time an unconditioned M-sequence in dimension > s and an unconditioned I-filter regular sequence with respect to M.

Proof. We proceed by induction on r. Let r = 1. Set

$$C_1 := \big(\operatorname{Ass}_R M\big)_{\geq s+1} \cup \Big(\operatorname{Ass}_R M \setminus \operatorname{Var}(I)\Big).$$

Since dim $(H_I^0(M)) \leq s$, it follows that $I \not\subseteq \mathfrak{p}$ for all $\mathfrak{p} \in (\operatorname{Ass}_R M)_{\geq s+1}$. Therefore, by Prime Avoidance, there exists an element $x_1 \in I$ such that $x_1 \notin \mathfrak{p}$ for all $\mathfrak{p} \in C_1$. It is clear that x_1 is an unconditioned M-sequence in dimension > s and an unconditioned I-filter regular sequence w.r.t. M.

Let r > 1 and assume that the result is true for r - 1. Then there exists a sequence x_1, \ldots, x_{r-1} in I which is an unconditioned M-sequence in dimension > s and an unconditioned I-filter regular sequence w.r.t. M. By Lemma 2.4 and by the assumption, for any subset J of $\{1, \ldots, r - 1\}$, the sequence $(x_j)_{j \in J}$ can be extended to an M-sequence in dimension > s in I of length r. Therefore for any subset J of $\{1, \ldots, r - 1\}$, there exists an $(M/\sum_{j \in J} x_j M)$ -regular element in dimension > s in I. It follows that $I \not\subseteq \mathfrak{p}$ for all $\mathfrak{p} \in \left(\operatorname{Ass}_R \left(M/\sum_{j \in J} x_j M \right) \right)_{\geq s+1}$ and all subsets J of $\{1, \ldots, r - 1\}$. By Prime Avoidance, we can choose an element $x_r \in I$ such that $x_r \notin \mathfrak{p}$ for all $\mathfrak{p} \in C_r$, where

$$C_r := \Big(\bigcup_{J \subseteq \{1,\dots,r-1\}} \operatorname{Ass}_R(M/\sum_{j \in J} x_j M)\Big)_{\geq s+1} \cup \Big(\bigcup_{J \subseteq \{1,\dots,r-1\}} \operatorname{Ass}_R(M/\sum_{j \in J} x_j M) \setminus \operatorname{Var}(I)\Big).$$

We first show that x_1, \ldots, x_r is an unconditioned M-sequence in dimension > s. Let $\sigma \in \mathbb{S}_r$ be a permutation of $1, \ldots, r$. Assume that $x_{\sigma(1)}, \ldots, x_{\sigma(r)}$ is not an M-sequence in dimension > s. Let $n \in \{1, \ldots, r\}$ be the least integer such that $x_{\sigma(1)}, \ldots, x_{\sigma(n)}$ is not an M-sequence in dimension > s. Then $r = \sigma(i)$ for some i < n by our choice

of x_r , and there is some $\mathfrak{p} \in \left(\operatorname{Ass}_R(M/(x_{\sigma(1)},\ldots,x_{\sigma(n-1)})M)\right)_{\geq s+1}$ such that $x_{\sigma(n)} \in \mathfrak{p}$. So $x_{\sigma(1)},\ldots,x_{\sigma(n)} \in \mathfrak{p}$ and $\frac{x_{\sigma(1)}}{1},\ldots,\frac{x_{\sigma(n)}}{1}$ is not a regular sequence w.r.t. $M_{\mathfrak{p}}$. Therefore $\frac{x_{\sigma(1)}}{1},\ldots,\frac{x_{\sigma(i-1)}}{1},\frac{x_{\sigma(i+1)}}{1},\ldots,\frac{x_{\sigma(n)}}{1},\frac{x_{\sigma(i)}}{1}$ is not a regular sequence w.r.t. $M_{\mathfrak{p}}$. Set $J := \{j \in \mathbb{N} : j \leq n, j \neq i\}$. As $\dim(R/\mathfrak{p}) > s$, we know that $\left(\frac{x_{\sigma(j)}}{1}\right)_{j\in J}$ is a regular sequence w.r.t. $M_{\mathfrak{p}}$. Therefore $\frac{x_r}{1} = \frac{x_{\sigma(i)}}{1}$ is not a regular element w.r.t. $M_{\mathfrak{p}}/\sum_{j\in J} x_{\sigma(j)}M_{\mathfrak{p}}$. So, there exists $\mathfrak{q} \in \operatorname{Spec}(R)$ with $\mathfrak{q} \subseteq \mathfrak{p}$ such that $\frac{x_r}{1} \in \mathfrak{q} R_{\mathfrak{p}} \in \operatorname{Ass}_{R_{\mathfrak{p}}}\left(M_{\mathfrak{p}}/\sum_{j\in J} x_{\sigma(j)}M_{\mathfrak{p}}\right)$. It follows that $x_r \in \mathfrak{q} \in \left(\operatorname{Ass}_R(M/\sum_{j\in J} x_{\sigma(j)}M)\right)_{\geq s+1} \subseteq C_r$. This gives a contradiction.

Finally, we need to prove that x_1, \ldots, x_r is an unconditioned I-filter regular sequence w.r.t. M. Assume that $x_{\sigma(1)}, \ldots, x_{\sigma(r)}$ is not an I-filter regular sequence w.r.t. M for some $\sigma \in \mathbb{S}_r$. Let n be the least integer such that $x_{\sigma(1)}, \ldots, x_{\sigma(n)}$ is not an I-filter regular sequence w.r.t. M. By our choice of x_r , we have $r = \sigma(i)$ for some i < n and there exists some $\mathfrak{p} \in \operatorname{Ass}_R(M/(x_{\sigma(1)}, \ldots, x_{\sigma(n-1)})M) \setminus \operatorname{Var}(I)$ such that $x_{\sigma(n)} \in \mathfrak{p}$. So $x_{\sigma(1)}, \ldots, x_{\sigma(n)} \in \mathfrak{p}$ and $\frac{x_{\sigma(1)}}{1}, \ldots, \frac{x_{\sigma(n)}}{1}$ is not a regular sequence w.r.t. $M_\mathfrak{p}$. Therefore $\frac{x_{\sigma(1)}}{1}, \ldots, \frac{x_{\sigma(i-1)}}{1}, \frac{x_{\sigma(i+1)}}{1}, \ldots, \frac{x_{\sigma(n)}}{1}, \frac{x_{\sigma(i)}}{1}$ is not a regular sequence w.r.t. $M_\mathfrak{p}$. Set $J := \{j \in \mathbb{N} : j \leq n, j \neq i\}$. As $\mathfrak{p} \notin \operatorname{Var}(I)$, we know that $\left(\frac{x_{\sigma(j)}}{1}\right)_{j \in J}$ is a regular sequence w.r.t. $M_\mathfrak{p}$. So, there exists some $\mathfrak{q} \in \operatorname{Spec}(R)$ with $\mathfrak{q} \subseteq \mathfrak{p}$ such that $\frac{x_r}{1} \in \mathfrak{q} R_\mathfrak{p} \in \operatorname{Ass}_{R_\mathfrak{p}}(M_\mathfrak{p}/\sum_{j \in J} x_{\sigma(j)}M_\mathfrak{p})$. It follows that $x_r \in \mathfrak{q} \in \left(\operatorname{Ass}_R(M/\sum_{j \in J} x_{\sigma(j)}M)\right)_{\geq s+1} \setminus \operatorname{Var}(I) \subseteq C_r$, a contradiction.

Proposition 2.6. Let s be a non-negative integer. Let x_1, \ldots, x_t be an unconditioned M-sequence in dimension > s. Then

$$\left(\bigcup_{n_1,\dots,n_t\in\mathbb{N}}\operatorname{Ass}_R\left(M/(x_1^{n_1},\dots,x_t^{n_t})M\right)\right)_{\geq s} = \left(\operatorname{Ass}_R(M/(x_1,\dots,x_t)M))\right)_{\geq s}$$

In particular, the set $\left(\bigcup_{n_1,\dots,n_t\in\mathbb{N}}\operatorname{Ass}_R\left(M/(x_1^{n_1},\dots,x_t^{n_t})M\right)\right)_{\geq s}$ is finite.

Proof. We prove the result by induction on t. Let t = 1 and we write $x_1 = x$. We will show by induction on $n_1 = n$ that $\left(\operatorname{Ass}_R(M/x^n M)\right)_{\geq s} \subseteq \operatorname{Ass}_R(M/xM)$. The case n = 1 is clear.

Let n > 1 and assume that the result is true for n - 1. Let $\mathfrak{p} \in \left(\operatorname{Ass}_R(M/x^n M) \right)_{\geq s}$. Then $\mathfrak{p} R_{\mathfrak{p}} \in \operatorname{Ass}_{R_{\mathfrak{p}}}(M_{\mathfrak{p}}/x^n M_{\mathfrak{p}})$. If $\dim(R/\mathfrak{p}) > s$ then x is a regular element w.r.t. $M_{\mathfrak{p}}$ and therefore $\mathfrak{p} R_{\mathfrak{p}} \in \operatorname{Ass}_{R_{\mathfrak{p}}}(M_{\mathfrak{p}}/xM_{\mathfrak{p}})$. It follows that $\mathfrak{p} \in \operatorname{Ass}_R(M/xM)$. Assume that $\dim(R/\mathfrak{p}) = s$. From the exact sequence

$$0 \longrightarrow x^{n-1}M/x^nM \longrightarrow M/x^nM \longrightarrow M/x^{n-1}M \longrightarrow 0,$$

we have $\mathfrak{p} \in \operatorname{Ass}_R(M/x^{n-1}M) \cup \operatorname{Ass}_R(x^{n-1}M/x^nM)$. If $\mathfrak{p} \in \operatorname{Ass}_R(M/x^{n-1}M)$ then by induction $\mathfrak{p} \in \operatorname{Ass}_R(M/xM)$. So, assume that $\mathfrak{p} \in \operatorname{Ass}_R(x^{n-1}M/x^nM)$. Consider the exact sequence

$$0 \longrightarrow (x^n M :_M x^{n-1}) / x M \longrightarrow M / x M \longrightarrow x^{n-1} M / x^n M \longrightarrow 0.$$

Set $K = (x^n M :_M x^{n-1})/xM$. Assume that $\mathfrak{p} \notin \operatorname{Supp}(K)$. Then the above exact sequence shows that $(M/xM)_{\mathfrak{p}} \cong (x^{n-1}M/x^nM)_{\mathfrak{p}}$. Since $\mathfrak{p} \in \operatorname{Ass}_R(x^{n-1}M/x^nM)$, it follows that $\mathfrak{p} \in \operatorname{Ass}_R(M/xM)$. So, we assume that $\mathfrak{p} \in \operatorname{Supp}(K)$. Note that for any $\mathfrak{q} \in \operatorname{Supp}(M)$ satisfying $\dim(R/\mathfrak{q}) > s$, we have $K_{\mathfrak{q}} = 0$ as x is a poor regular element w.r.t. $M_{\mathfrak{q}}$. So $\dim(K) \leq s$. Hence \mathfrak{p} is a minimal element in $\operatorname{Supp}(K)$, and hence $\mathfrak{p} \in \operatorname{Ass}_R(K) \subseteq \operatorname{Ass}_R(M/xM)$. So, the result is true for t = 1.

Let t > 1 and assume that the result is true for t - 1. Let n_1, \ldots, n_t be arbitrary positive integers. Since x_t is an $M/(x_1^{n_1}, \ldots, x_{t-1}^{n_{t-1}})M$ -regular element in dimension > s, we get by the case t = 1 that

$$\left(\operatorname{Ass}_{R}\left(M/(x_{1}^{n_{1}},\ldots,x_{t}^{n_{t}})M\right)\right)_{\geq s} \subseteq \operatorname{Ass}_{R}\left(M/(x_{1}^{n_{1}},\ldots,x_{t-1}^{n_{t-1}},x_{t})M\right)$$

Since x_1, \ldots, x_{t-1} is an unconditioned $M/x_t M$ -sequence in dimension > s, we have by induction that

$$\left(\operatorname{Ass}_{R}\left(M/(x_{1}^{n_{1}},\ldots,x_{t-1}^{n_{t-1}},x_{t})M\right)\right)_{\geq s}=\left(\operatorname{Ass}_{R}\left(M/(x_{t},x_{1}^{n_{1}},\ldots,x_{t-1}^{n_{t-1}})M\right)\right)_{\geq s}$$
$$\subseteq \operatorname{Ass}_{R}\left(M/(x_{1},\ldots,x_{t})M\right).$$

This proves our claim.

In general, a permutation of an M-sequence in dimension > s is not an M-sequence in dimension > s. In particular, a permutation of a generalized regular sequence is not necessarily a generalized regular sequence. For example, let $R = k[[x_1, x_2, x_3, x_4, x_5]]$ be the ring of power series in 5 variables over a field k. Let $M = R/(x_1) \cap (x_2, x_3, x_4)$. Then dim M = 4 and x_5, x_2 is a generalized regular sequence w.r.t M, but x_2, x_5 is not a generalized regular sequence w.r.t M. This fact shows that Lemma 2.2(i),(ii) of [Nh] is not correct. It follows that the proof of [Nh, 3.1] is not correct, too. The next corollary is an improvement and also a correction of [Nh, 3.1].

Corollary 2.7. Assume that x_1, \ldots, x_t is an unconditioned generalized regular sequence w.r.t. M. Then

$$\bigcup_{n_1,\ldots,n_t\in\mathbb{N}}\operatorname{Ass}_R\left(M/(x_1^{n_1},\ldots,x_t^{n_t})M\right)\setminus\operatorname{Max} R\subseteq\operatorname{Ass}_R(M/(x_1,\ldots,x_t)M)).$$

In particular, if in addition R is local, then $\bigcup_{n_1,\ldots,n_t\in\mathbb{N}} \operatorname{Ass}_R\left(M/(x_1^{n_1},\ldots,x_t^{n_t})M\right)$ is a finite set.

Proof. The proof is immediate by setting s = 1 in Proposition 2.6.

3 Finiteness results

Remark 3.1. Let $I \subseteq R$ be an ideal with depth(I, M) = t. Then it is well known that

$$\operatorname{Ass}_R(\operatorname{Ext}_R^t(R/I, M)) = \operatorname{Ass}_R(H_I^t(M)).$$

Lemma 3.2. Let t be a positive integer. Set $P_t = \bigcup_{i=0}^{t-1} \operatorname{Supp} \left(\operatorname{Ext}_R^i(R/I, M) \right)$. Then $\operatorname{Ass}_R \left(\operatorname{Ext}_R^t(R/I^n, M) \right) \cup P_t = \operatorname{Ass}_R \left(\operatorname{Ext}_R^t(R/(a_1^{n_1}, \dots, a_k^{n_k}), M) \right) \cup P_t$ $= \operatorname{Ass}_R \left(\operatorname{Ext}_R^t(R/I, M) \right) \cup P_t = \operatorname{Ass}_R(H_I^t(M)) \cup P_t$

for any system of generators (a_1, \ldots, a_k) of I and all positive integers n, n_1, \ldots, n_k .

Proof. Let $\mathfrak{p} \in \operatorname{Supp}(M)$ such that $\mathfrak{p} \notin P_t$. Then for any i < t we have

$$\operatorname{Ext}_{R_{\mathfrak{p}}}^{i}(R_{\mathfrak{p}}/IR_{\mathfrak{p}}, M_{\mathfrak{p}}) \cong \left(\operatorname{Ext}_{R}^{i}(R/I, M)\right)_{\mathfrak{p}} = 0.$$

Therefore depth $(IR_{\mathfrak{p}}, M_{\mathfrak{p}}) \geq t$. Let n, n_1, \ldots, n_k be positive integers. It is clear that

$$\operatorname{depth}(I^n R_{\mathfrak{p}}, M_{\mathfrak{p}}) = \operatorname{depth}(I R_{\mathfrak{p}}, M_{\mathfrak{p}}) = \operatorname{depth}((a_1^{n_1}, \dots, a_k^{n_k}) R_{\mathfrak{p}}, M_{\mathfrak{p}})$$

We first suppose that depth $(IR_{\mathfrak{p}}, M_{\mathfrak{p}}) > t$. Then the $R_{\mathfrak{p}}$ -modules $\operatorname{Ext}_{R_{\mathfrak{p}}}^{t}(R_{\mathfrak{p}}/I^{n}R_{\mathfrak{p}}, M_{\mathfrak{p}})$, $\operatorname{Ext}_{R_{\mathfrak{p}}}^{t}(R_{\mathfrak{p}}/(a_{1}^{n_{1}}, \ldots, a_{k}^{n_{k}})R_{\mathfrak{p}}, M_{\mathfrak{p}})$, $\operatorname{Ext}_{R_{\mathfrak{p}}}^{t}(R_{\mathfrak{p}}/IR_{\mathfrak{p}}, M_{\mathfrak{p}})$, $H_{IR_{\mathfrak{p}}}^{t}(M_{\mathfrak{p}})$ are zero. So, \mathfrak{p} does not belong to any of the four sets $\operatorname{Ass}_{R}(\operatorname{Ext}_{R}^{t}(R/I^{n}, M))$, $\operatorname{Ass}_{R}(\operatorname{Ext}_{R}^{t}(R/(a_{1}^{n_{1}}, \ldots, a_{k}^{n_{k}}), M))$, $\operatorname{Ass}_{R}(\operatorname{Ext}_{R}^{t}(R/I, M))$ and $\operatorname{Ass}_{R}(H_{I}^{t}(M))$.

Assume that depth $(IR_{\mathfrak{p}}, M_{\mathfrak{p}}) = t$. Since $\operatorname{rad}(I) = \operatorname{rad}(I^n) = \operatorname{rad}((a_1^{n_1}, \ldots, a_k^{n_k})R)$, we have by Remark 3.1 that

$$\operatorname{Ass}_{R_{\mathfrak{p}}}\left(\operatorname{Ext}_{R_{\mathfrak{p}}}^{t}(R_{\mathfrak{p}}/I^{n}R_{\mathfrak{p}},M_{\mathfrak{p}})\right) = \operatorname{Ass}_{R_{\mathfrak{p}}}\left(H_{I^{n}R_{\mathfrak{p}}}^{t}(M_{\mathfrak{p}})\right) = \operatorname{Ass}_{R_{\mathfrak{p}}}\left(H_{IR_{\mathfrak{p}}}^{t}(M_{\mathfrak{p}})\right)$$
$$= \operatorname{Ass}_{R_{\mathfrak{p}}}\left(\operatorname{Ext}_{R_{\mathfrak{p}}}^{t}(R_{\mathfrak{p}}/IR_{\mathfrak{p}},M_{\mathfrak{p}})\right),$$

$$\operatorname{Ass}_{R_{\mathfrak{p}}}\left(\operatorname{Ext}_{R_{\mathfrak{p}}}^{t}(R_{\mathfrak{p}}/(a_{1}^{n_{1}},\ldots,a_{k}^{n_{k}})R_{\mathfrak{p}},M_{\mathfrak{p}})\right) = \operatorname{Ass}_{R_{\mathfrak{p}}}\left(H_{IR_{\mathfrak{p}}}^{t}(M_{\mathfrak{p}})\right)$$

It follows that

$$\mathfrak{p} \in \operatorname{Ass}_R(\operatorname{Ext}_R^t(R/I^n, M) \Leftrightarrow \mathfrak{p} \in \operatorname{Ass}_R(H_I^t(M)) \Leftrightarrow \mathfrak{p} \in \operatorname{Ass}_R(\operatorname{Ext}_R^t(R/I, M))$$
$$\Leftrightarrow \mathfrak{p} \in \operatorname{Ass}_R(\operatorname{Ext}_R^t(R/(a_1^{n_1}, \dots, a_k^{n_k}), M).$$

Now the result follows immediately.

The next lemma follows easily by induction on t using Remark 3.1 and Lemma 3.2. Lemma 3.3. For any integer $t \ge 0$ we have

$$\bigcup_{i=0}^{t} \left(\bigcup_{n \in \mathbb{N}} \operatorname{Supp} \left(\operatorname{Ext}_{R}^{i}(R/I^{n}, M) \right) \right) = \bigcup_{i=0}^{t} \operatorname{Supp} \left(\operatorname{Ext}_{R}^{i}(R/I, M) \right) = \bigcup_{i=0}^{t} \operatorname{Supp} \left(H_{I}^{i}(M) \right)$$

It should be mentioned that the equalities $\operatorname{Ass}_R(\operatorname{Ext}_R^t(R/I, M)) \cup P_t = \operatorname{Ass}_R(H_I^t(M)) \cup P_t$ in Lemma 3.2 and $\bigcup_{i=0}^t \operatorname{Supp}(\operatorname{Ext}_R^i(R/I, M)) = \bigcup_{i=0}^t \operatorname{Supp}(H_I^i(M))$ in Lemma 3.3 have been proved by Cuong-Hoang [CH].

Proof of Theorem 1.1. Let $t \leq r$ be a non-negative integer. Set $P_t = \bigcup_{i=0}^{t-1} \operatorname{Supp}(\operatorname{Ext}_R^i(R/I, M))$. Then $P_t = \bigcup_{i=0}^{t-1} \operatorname{Supp}(H_I^i(M))$ by Lemma 3.3. Therefore, by our assumption, $\dim(R/\mathfrak{p}) \leq s$ for all $\mathfrak{p} \in P_t$. Now, let $\mathfrak{p} \in (T^t(I, M))_{\geq s} \cup (T^t(\underline{a}, M))_{\geq s}$. If $\dim(R/\mathfrak{p}) > s$ then $\mathfrak{p} \notin P_t$. So, we get by Lemma 3.2 that $\mathfrak{p} \in \operatorname{Ass}_R(\operatorname{Ext}_R^t(R/I, M))$.

Let $\dim(R/\mathfrak{p}) = s$. It follows by Lemma 3.2 that $\mathfrak{p} \in \left(\operatorname{Ass}(\operatorname{Ext}_{R}^{t}(R/I, M) \cup P_{t}\right)_{s}$. If $\mathfrak{p} \notin \operatorname{Ass}_{R}(\operatorname{Ext}_{R}^{t}(R/I, M))$ then $\mathfrak{p} \in P_{t}$, and hence \mathfrak{p} is a minimal prime ideal of $\operatorname{Ext}_{R}^{i}(R/I, M)$ for some i < t. Therefore $\mathfrak{p} \in \operatorname{Ass}_{R}(\operatorname{Ext}_{R}^{i}(R/I, M))$ for some i < t. Thus, $T^{t}(I, M)$ and $T^{t}(\underline{a}, M)$ are subsets of $\bigcup_{i=0}^{t} \operatorname{Ass}(\operatorname{Ext}_{R}^{i}(R/I, M))$.

Proof of Theorem 1.2. Let $t \leq r$ be a non-negative integer. Let $\mathfrak{p} \in (T^t(I, M))_{\geq s} \cup (T^t(\underline{a}, M))_{\geq s}$. Let i < t. Since dim $(\operatorname{Supp}(H^i_I(M))) \leq s$, any prime ideal in $(\operatorname{Supp}(H^i_I(M)))_{\geq s}$ is minimal in $\operatorname{Supp}(H^i_I(M))$ and hence associated to $H^i_I(M)$. It follows that

$$\left(\operatorname{Supp}(H_I^i(M))\right)_{\geq s} = \left(\operatorname{Ass}_R(H_I^i(M))\right)_s \text{ for all } i < t.$$

So, we get by Lemma 3.2 and Lemma 3.3 that $\mathfrak{p} \in \left(\bigcup_{i=0}^{t-1} \operatorname{Ass}_R(H_I^i(M))\right)_s \cup \left(\operatorname{Ass}_R(H_I^t(M))\right)_{\geq s}$.

As $x_1, \ldots, x_r \in I$ is an unconditioned I-filter regular sequence w.r.t. M, we have by 2.2 that $H_I^i(M) \cong H_I^0(H^i_{(x_1,\ldots,x_i)R}(M))$ for all $i = 1, \ldots, t$. Therefore, for each $i = 1, \ldots, t$, we have

$$\operatorname{Ass}_{R} H_{I}^{i}(M) \subseteq \operatorname{Ass}_{R} \left(H_{(x_{1},\dots,x_{i})R}^{i}(M) \right) \subseteq \bigcup_{n \in \mathbb{N}} \operatorname{Ass}_{R} \left(M/(x_{1}^{n},\dots,x_{i}^{n})M \right).$$

As x_1, \ldots, x_r is an unconditioned M-sequence in dimension > s, we get by Proposition 2.6 that

$$\left(\bigcup_{n\in N}\operatorname{Ass}_R\left(M/(x_1^n,\ldots,x_i^n)M\right)\right)_s = \left(\operatorname{Ass}_R(M/(x_1,\ldots,x_i)M)\right)_s$$

for all $i = 1, \ldots, t$, and

$$\Big(\bigcup_{n\in N} \operatorname{Ass}_R\left(M/(x_1^n,\ldots,x_t^n)M\right)\Big)_{\geq s+1} = \Big(\operatorname{Ass}_R\left(M/(x_1,\ldots,x_t)M\right)\Big)_{\geq s+1}.$$

If dim $(R/\mathfrak{p}) > s$ then t = r and $\mathfrak{p} \in \operatorname{Ass}_R H_I^t(M)$, hence $\mathfrak{p} \in \left(\operatorname{Ass}_R(M/(x_1, \dots, x_t)M)\right)_{\geq s+1}$. If dim $(R/\mathfrak{p}) = s$ then

$$\mathfrak{p} \in \bigcup_{i=0}^{t} \left(\operatorname{Ass}_{R}(H_{I}^{i}(M)) \right)_{s} = \bigcup_{i=0}^{t} \left(\operatorname{Ass}_{R}(M/(x_{1},\ldots,x_{i})M) \right)_{s}$$

Now the result follows immediately.

Replacing s by 1 in Theorems 1,2 and on use of Lemma 3.2 we get the following result.

Corollary 3.4. Let r > 0 be an integer such that $\dim(\operatorname{Supp}(H_I^i(M))) \leq 1$ for all i < r. Let $\underline{a} = (a_1, \ldots, a_k)$ be a system of generators of I. Then

(a) For any integer $t \leq r$, the sets $T^t(I, M)$ and $T^t(\underline{a}, M)$ are contained in the set

$$\bigcup_{i=0}^{t} \operatorname{Ass}_{R}(\operatorname{Ext}_{R}^{i}(R/I, M)) \cup \left(\operatorname{Max}(R) \cap \bigcup_{i=0}^{t-1} \operatorname{Supp}(H_{I}^{i}(M))\right)$$

(b) Let $x_1, \ldots, x_r \in I$ be an unconditioned generalized regular sequence with respect to M which is an unconditioned I-filter regular sequence with respect to M (such sequences exist by Proposition 2.5). Then for any integer $t \leq r$, the sets $T^t(I, M)$ and $T^t(\underline{a}, M)$ are contained

in the set
$$\left(\operatorname{Ass}_R(M/(x_1,\ldots,x_t)M)\right)_{\geq 2} \cup \left(\bigcup_{i=0}^t \operatorname{Ass}_R(M/(x_1,\ldots,x_i)M)\right)_1 \cup \operatorname{Max}(R).$$

Remark 3.5. Let R be local. In Khashyarmanesh [Kh], it is shown that if $H_I^i(M)$ is of finite support for all i < r then the set $(T^r(I, M))_{\geq 2} = \{\mathfrak{p} \in T^r(I, M) : \dim R/\mathfrak{p} > 1\}$ is finite. Corollary 3.4 shows that even $T^r(I, M)$ is a finite set.

Setting s = 0 in Theorems 1,2 we get the following result.

Corollary 3.6. Let r > 0 be an integer such that $\dim(\operatorname{Supp}(H_I^i(M))) \leq 0$ for all i < r. Let $\underline{a} = (a_1, \ldots, a_k)$ be a system of generators of I. Then

(a) For any integer $t \leq r$, the sets $T^t(I, M)$ and $T^t(\underline{a}, M)$ are contained in the finite set $\bigcup_{i=0}^{t} \operatorname{Ass}_R(\operatorname{Ext}^i_R(R/I, M)).$

(b) Let $x_1, \ldots, x_r \in I$ be an unconditioned filter regular sequence with respect to M which is an unconditioned I-filter regular sequence with respect to M (such sequences exist by Proposition 2.5). Then for any integer $t \leq r$, the sets $T^t(I, M)$ and $T^t(\underline{a}, M)$ are contained in the finite set $\left(\operatorname{Ass}_R(M/(x_1, \ldots, x_t)M)\right)_{\geq 1} \cup \bigcup_{i=0}^t \operatorname{Ass}_R(M/(x_1, \ldots, x_i)M)$. Acknowledgment. The second author is deeply grateful to the Institute of Mathematics of the University of Zürich (Switzerland) for the support while completing this work.

References

- [M] M. Brodmann, Asymptotic stability of $\operatorname{Ass}_R(M/I^nM)$, Proc. Amer. Math. Soc., (1) 74 (1979), 16-18.
- [BS] M. Brodmann and R. Y. Sharp, "Local cohomology: an algebraic introduction with geometric applications", Cambridge University Press, 1998.
- [CH] N. T. Cuong and N. V. Hoang, Some finite properties of generalized local cohomology modules, Proceeding of the second Japan-Vietnam joint seminar on Commutative Algebra, March 20-26, 2006, Meiji University.
- [Cts] N. T. Cuong, P. Schenzel and N. V. Trung, Verallgemeinerte Cohen-Macaulay Moduln, Math. Nachr, 85 (1978), 57-73.
- [Ka] M. Katzman, An example of an infinite set of associated primes of a local cohomology module, J. Algebra, 252 (2002), 161-166.
- [Kh] K. Khashyarmanesh, On the finiteness properties of $\bigcup_i \operatorname{Ass}_R(\operatorname{Ext}^i_R(R/\mathfrak{a}^i, M))$, Comm. Algebra, **34** (2006), 779-784.
- [NS] U. Nagel and P. Schenzel, Cohomological annihilators and Castelnuovo-Mumford regularity, In: Commutative Algebra: Syzygies, Multiplicities, and Birational Algebra (South Hadley, 1992). Contemp. Math., 159. Amer. Math. Soc., (1994), 307-328.
- [Nh] L. T. Nhan, On generalized regular sequences and the finiteness for associated primes of local cohomology modules, Comm. Algebra, 33 (2005), 793-806.
- [MS] L. Melkersson and P. Schenzel, Asymptotic prime ideals related to derived functors, Proc. Amer. Math. Soc., (4) 117 (1993), 935-938.
- [Sh] R. Y. Sharp, Asymptotic behaviour of certain sets of attached prime ideals, J. London Math. Soc., (2) 34 (1986), 212-218.

Institute of Mathematics, University of Zürich, Zürich, Switzerland E-mail address: brodmann@math.unizh.ch

Natural Sciences College, Thai Nguyen University, Thai Nguyen, Vietnam E-mail address: trtrnhan@yahoo.com