A FINITENESS RESULT FOR ASSOCIATED PRIMES OF CERTAIN EXT-MODULES

MARKUS BRODMANN and LE THANH NHAN

Abstract

Using some properties of unconditioned M-sequences in dimension $>s$, we give a finiteness result for the set $\bigcup_{n \in \mathbb{N}} \operatorname{Ass}_{R}\left(\operatorname{Ext}_{R}^{i}\left(R / I^{n}, M\right)\right)$.

1 Introduction

Throughout this paper, let R be a Noetherian commutative ring, let M be a finitely generated R-module, and A an Artinian R-module.

For an ideal I of R, it was shown in [B] that the two sequences of associated primes

$$
\operatorname{Ass}_{R}\left(M / I^{n} M\right) \text { and } \operatorname{Ass}_{R}\left(I^{n} M / I^{n+1} M\right), n=1,2, \ldots
$$

eventually become constant for large n. Sharp [Sh] proved the dual result for Artinian modules: $\operatorname{Att}_{R}\left(0:_{A} I^{n}\right)$ and $\operatorname{Att}_{R}\left(\left(0:_{A} I^{n}\right) /\left(0:_{A} I^{n-1}\right)\right)$ do not depend on n for n large. Starting from the observation that $M / I^{n} M \cong \operatorname{Tor}_{0}^{R}\left(R / I^{n}, M\right)$ and $0:_{A} I^{n} \cong \operatorname{Ext}_{R}^{0}\left(R / I^{n}, A\right)$ for any n, Melkersson and Schenzel [MS] extended the above results as follows: For any given integer $i \geq 0$, the sequences

$$
\operatorname{Ass}_{R}\left(\operatorname{Tor}_{i}^{R}\left(R / I^{n}, M\right)\right) \text { and } \operatorname{Att}_{R}\left(\operatorname{Ext}_{R}^{i}\left(R / I^{n}, A\right)\right), n=1,2, \ldots
$$

become independent of n for large n. Melkersson and Schenzel [MS] also asked whether the set $\operatorname{Ass}_{R}\left(\operatorname{Ext}_{R}^{i}\left(R / I^{n}, M\right)\right)$ is independent of n for large n.

In fact, $\bigcup_{n \in \mathbb{N}} \operatorname{Ass}_{R}\left(\operatorname{Ext}_{R}^{i}\left(R / I^{n}, M\right)\right)$ is not a finite set in general, and therefore the set $\operatorname{Ass}_{R}\left(\operatorname{Ext}_{R}^{i}\left(R / I^{n}, M\right)\right)$ depends on n for n large. Indeed, Katzman [Ka, Corollary 1.3] gave an example of a Noetherian local ring (R, \mathfrak{m}) with two elements $x, y \in \mathfrak{m}$ such that $\operatorname{Ass}_{R}\left(H_{(x, y) R}^{2}(R)\right)$ is an infinite set. Therefore the set $\bigcup_{n \in \mathbb{N}} \operatorname{Ass}_{R}\left(\operatorname{Ext}_{R}^{2}\left(R /(x, y)^{n}, R\right)\right)$ is infinite.

For convenience, for a subset T of Spec R and an integer $i \geq 0$, we set

$$
\begin{aligned}
(T)_{i} & : \\
(T)_{\geq i} & :=\{\mathfrak{p} \in T: \operatorname{dim} R / \mathfrak{p}=i\} \\
& : \operatorname{dim} R / \mathfrak{p} \geq i\}
\end{aligned}
$$

[^0]For an integer $i \geq 0$, an ideal I of R, and a system $\underline{a}=\left(a_{1}, \ldots, a_{k}\right)$ of elements in R, we set

$$
\begin{aligned}
T^{i}(I, M) & :=\bigcup_{n \in \mathbb{N}} \operatorname{Ass}_{R}\left(\operatorname{Ext}_{R}^{i}\left(R / I^{n}, M\right)\right) \\
T^{i}(\underline{a}, M): & =\bigcup_{n_{1}, \ldots, n_{k} \in \mathbb{N}} \operatorname{Ass}_{R}\left(\operatorname{Ext}_{R}^{i}\left(R /\left(a_{1}^{n_{1}}, \ldots, a_{k}^{n_{k}}\right), M\right)\right)
\end{aligned}
$$

In this paper, we prove the following finiteness result for the sets $T^{i}(I, M)$ and $T^{i}(\underline{a}, M)$.
Theorem 1.1. Let $s \geq 0$ and $r \geq 1$ be integers. Assume that $\operatorname{dim}\left(\operatorname{Supp}\left(H_{I}^{i}(M)\right)\right) \leq s$ for all $i<r$. Then for any system of generators $\underline{a}=\left(a_{1}, \ldots, a_{k}\right)$ of I and for all integers $t \leq r$, the sets $\left(T^{t}(I, M)\right)_{\geq s}$ and $\left(T^{t}(\underline{a}, M)\right)_{\geq s}$ are contained in the finite set $\bigcup_{i=0}^{t} \operatorname{Ass}_{R} \operatorname{Ext}_{R}^{i}(R / I, M)$.
Theorem 1.2. Let $s \geq 0$ and $r \geq 1$ be integers. Assume that $\operatorname{dim}\left(\operatorname{Supp}\left(H_{I}^{i}(M)\right)\right) \leq s$ for all $i<r$. Let $x_{1}, \ldots, x_{r} \in I$ be a sequence which is at the same time an unconditioned M-sequence in dimension $>s$ and an unconditioned I-filter regular sequence with respect to M (such sequences exist by Proposition 2.5). Then for any system of generators $\underline{a}=$ $\left(a_{1}, \ldots, a_{k}\right)$ of I and for all integers $t \leq r$, the sets $\left(T^{t}(I, M)\right)_{\geq s}$ and $\left(T^{t}(\underline{a}, M)\right)_{\geq s}$ are contained in the finite set

$$
\left(\operatorname{Ass}_{R}\left(M /\left(x_{1}, \ldots, x_{t}\right) M\right)\right)_{\geq s+1} \cup\left(\bigcup_{i=0}^{t} \operatorname{Ass}_{R}\left(M /\left(x_{1}, \ldots, x_{i}\right) M\right)\right)_{s}
$$

2 Unconditioned M-sequences in dimension $>s$

Definition 2.1. Let $s \geq 0$ be an integer, let $x_{1}, \ldots, x_{r} \in R$ be a sequence. We say that x_{1}, \ldots, x_{r} is an M-sequence in dimension $>s$ if x_{1}, \ldots, x_{r} is a poor $M_{\mathfrak{p}}$-sequence for all $\mathfrak{p} \in \operatorname{Spec}(R)$ with $\operatorname{dim}(R / \mathfrak{p})>s$.

Observe that x_{1}, \ldots, x_{r} is an M-sequence in dimension $>s$ if and only if $x_{i} \notin \mathfrak{p}$ for all $\mathfrak{p} \in\left(\operatorname{Ass}_{R}\left(M /\left(x_{1}, \ldots, x_{i-1}\right) M\right)\right)_{\geq s+1}$ and all $i=1, \ldots, r$.

Assume that R is local. Then x_{1}, \ldots, x_{r} is an M-sequence in dimension >0 if and only if it is a filter regular sequence with respect to M in sense of [Cst]. Moreover, x_{1}, \ldots, x_{r} is an M-sequence in dimension >1 if and only if it is a generalized regular sequence with respect to M in sense of [Nh$]$.
Reminder 2.2. (a) Let I be an ideal. A sequence $x_{1}, \ldots, x_{r} \in I$ is called an I-filter regular sequence with respect to M if x_{1}, \ldots, x_{r} is an $M_{\mathfrak{p}}-$ sequence for all $\mathfrak{p} \in \operatorname{Spec}(R) \backslash \operatorname{Var}(I)$. It is equivalent to say that $x_{i} \notin \mathfrak{p}$ for all $\mathfrak{p} \in \operatorname{Ass}_{R}\left(M /\left(x_{1}, \ldots, x_{i-1}\right) M\right) \backslash \operatorname{Var}(I)$ and all $i=1, \ldots, r$.
(b) (cf. [NS, 3.4], [Kh, 2.1]). If x_{1}, \ldots, x_{r} is an I-filter regular sequence with respect to M then

$$
H_{I}^{j}(M)= \begin{cases}H_{\left(x_{1}, \ldots, x_{r}\right) R}^{j}(M), & \text { if } j<r \\ H_{I}^{j-r}\left(H_{\left(x_{1}, \ldots, x_{r}\right) R}^{r}(M)\right), & \text { if } j \geq r\end{cases}
$$

Definition 2.3. A sequence $x_{1}, \ldots, x_{r} \in R$ is called an unconditioned M-sequence in dimension $>s$ if $x_{\sigma(1)}, \ldots, x_{\sigma(r)}$ is an M-sequence in dimension $>s$ for all permutations $\sigma \in \mathbb{S}_{r}$. Similarly, a sequence $x_{1}, \ldots, x_{r} \in I$ is called an unconditioned I-filter regular sequence with respect to M if $x_{\sigma(1)}, \ldots, x_{\sigma(r)}$ is an I-filter regular sequence with respect to M for all permutations $\sigma \in \mathbb{S}_{r}$.
Lemma 2.4. Let $s \geq 0$ be an integer, let I be an ideal of R.
(a) Let $r>0$ be an integer. Then $\operatorname{dim}\left(\operatorname{Supp}\left(H_{I}^{i}(M)\right)\right) \leq s$ for all $i<r$ if and only if there exists an M-sequence in dimension $>s$ of length r in I.
(b) If $\operatorname{dim}(M / I M)>s$ then each M-sequence in dimension $>s$ in I may be extended to a maximal M-sequence in dimension $>s$ in I. Moreover, all maximal M-sequences in dimension $>s$ in I have the same length, and this common length is equal to the least integer i such that $\operatorname{dim}\left(\operatorname{Supp}\left(H_{I}^{i}(M)\right)\right)>s$.
(c) If $\operatorname{dim}(M / I M) \leq s$ then there exists an M-sequence in dimension $>s$ in I of length n for any integer $n>0$.

Proof. (a). Assume that $\operatorname{dim}\left(\operatorname{Supp}\left(H_{I}^{i}(M)\right)\right) \leq s$ for all $i<r$. We prove by induction on r that there is a sequence $x_{1}, \ldots, x_{r} \in I$ which is an M-sequence in dimension $>s$. Let $r \geq 1$. Then $\operatorname{dim}\left(\operatorname{Supp}\left(H_{I}^{0}(M)\right)\right) \leq s$. Hence $I \nsubseteq \mathfrak{p}$ for all $\mathfrak{p} \in\left(\operatorname{Ass}_{R} M\right)_{\geq s+1}$. Therefore there exists an element $x_{1} \in I$ which is M-regular in dimension $>s$. This proves the case $r=1$. Let $r>1$ and set $x_{1}=x$. Then $\operatorname{dim}\left(0:_{M} x\right) \leq s$. From the exact sequence $0 \longrightarrow 0:_{M} x \longrightarrow M \longrightarrow M /\left(0:_{M} x\right) \longrightarrow 0$ we get an exact sequence

$$
H_{I}^{i}(M) \longrightarrow H_{I}^{i}\left(M /\left(0:_{M} x\right)\right) \longrightarrow H_{I}^{i+1}\left(0:_{M} x\right)
$$

for all $i \geq 0$. As $\operatorname{dim}\left(0:_{M} x\right) \leq s$, we have $\operatorname{dim}\left(\operatorname{Supp}\left(H_{I}^{i}\left(0:_{M} x\right)\right)\right) \leq s$ for all $i \geq 0$. Therefore, by our hypothesis, $\operatorname{dim}\left(\operatorname{Supp}\left(H_{I}^{i}\left(M /\left(0:_{M} x\right)\right)\right) \leq s\right.$ for all $i<r$. From the exact sequence

$$
0 \longrightarrow M /\left(0:_{M} x\right) \longrightarrow M \longrightarrow M / x M \longrightarrow 0
$$

we get an exact sequence $H_{I}^{i}(M) \longrightarrow H_{I}^{i}(M / x M) \longrightarrow H_{I}^{i+1}\left(M /\left(0:_{M} x\right)\right)$ for all $i \geq 0$. So, $\operatorname{dim}\left(\operatorname{Supp}\left(H_{I}^{i}(M / x M)\right)\right) \leq s$ for all $i<r-1$. By induction, there exists a sequence x_{2}, \ldots, x_{r} in I which is an $M / x M$-sequence in dimension $>s$. So, x_{1}, \ldots, x_{r} is an M-sequence in dimension $>s$ in I.

Conversely, assume x_{1}, \ldots, x_{r} is an M-sequence in dimension $>s$ in I. Let $\mathfrak{p} \in \operatorname{Spec} R$ such that $\operatorname{dim}(R / \mathfrak{p})>s$. Then $\frac{x_{1}}{1}, \ldots, \frac{x_{r}}{1}$ is a poor $M_{\mathfrak{p}}-$ sequence in $I_{\mathfrak{p}}$. So, $H_{I R_{\mathfrak{p}}}^{i}\left(M_{\mathfrak{p}}\right)=0$, i.e. $\mathfrak{p} \notin \operatorname{Supp}\left(H_{I}^{i}(M)\right)$ for all $i<r$. Therefore $\left.\operatorname{dim}\left(\operatorname{Supp} H_{I}^{i}(M)\right)\right) \leq s$ for all $i<r$.
(b). Since $\operatorname{dim}(M / I M)>s$, there is a maximal ideal \mathfrak{m} such that $\operatorname{dim}\left(M_{\mathfrak{m}} / I M_{\mathfrak{m}}\right)>s$. Note that each M-sequence in dimension $>s$ in I is an $M_{\mathfrak{m}}$-sequence in dimension $>s$ in $I R_{\mathfrak{m}}$.

As $\operatorname{dim}\left(M_{\mathfrak{m}} / I M_{\mathfrak{m}}\right)>s$, each $M_{\mathfrak{m}}$-sequence in dimension $>s$ in $I R_{\mathfrak{m}}$ is a part of a system of parameters of $M_{\mathfrak{m}}$. Therefore the length of an M-sequence in dimension $>s$ in I is at most $\operatorname{dim} M_{\mathfrak{m}}-s-1$. So, there is a common bound on the lengths of all M-sequences in dimension $>s$ which consist of elements in I. Therefore, each M-sequence in dimension $>s$ in I may be extended to a maximal M-sequence in dimension $>s$ in I.

Let x_{1}, \ldots, x_{r} and y_{1}, \ldots, y_{t} be maximal M-sequences in dimension $>s$ in I. Assume that $r \neq t$, say $r<t$. By (a), $\left.\operatorname{dim}\left(\operatorname{Supp} H_{I}^{i}(M)\right)\right) \leq s$ for all $i \leq r$. Similar as in the proof of (a), it follows by induction on k that $\operatorname{dim}\left(\operatorname{Supp}\left(H_{I}^{i}\left(M /\left(x_{1}, \ldots, x_{k}\right) M\right)\right)\right) \leq s$ for all $i \leq r-k$ and all $k \leq r$. Thus $\operatorname{dim}\left(H_{I}^{0}\left(M /\left(x_{1}, \ldots, x_{r}\right) M\right)\right) \leq s$. Therefore there is an element in I which is $M /\left(x_{1}, \ldots, x_{r}\right) M$-regular in dimension $>s$. This is a contradiction to the maximality of the sequence $\left(x_{1}, \ldots, x_{r}\right)$. So, all maximal M-sequences in dimension $>s$ in I have the same length and by (a) this length has the stated value.
(c) is clear.

Proposition 2.5. Let $s \geq 0$ and $r \geq 1$ be integers, and let $I \subseteq R$ be an ideal. If $\operatorname{dim}\left(\operatorname{Supp}\left(H_{I}^{i}(M)\right)\right) \leq s$ for all $i<r$ then there is a sequence x_{1}, \ldots, x_{r} in I which is at the same time an unconditioned M-sequence in dimension $>s$ and an unconditioned I-filter regular sequence with respect to M.

Proof. We proceed by induction on r. Let $r=1$. Set

$$
C_{1}:=\left(\operatorname{Ass}_{R} M\right)_{\geq s+1} \cup\left(\operatorname{Ass}_{R} M \backslash \operatorname{Var}(I)\right)
$$

Since $\operatorname{dim}\left(H_{I}^{0}(M)\right) \leq s$, it follows that $I \nsubseteq \mathfrak{p}$ for all $\mathfrak{p} \in\left(\operatorname{Ass}_{R} M\right)_{\geq s+1}$. Therefore, by Prime Avoidance, there exists an element $x_{1} \in I$ such that $x_{1} \notin \mathfrak{p}$ for all $\mathfrak{p} \in C_{1}$. It is clear that x_{1} is an unconditioned M-sequence in dimension $>s$ and an unconditioned I-filter regular sequence w.r.t. M.

Let $r>1$ and assume that the result is true for $r-1$. Then there exists a sequence x_{1}, \ldots, x_{r-1} in I which is an unconditioned M-sequence in dimension $>s$ and an unconditioned I-filter regular sequence w.r.t. M. By Lemma 2.4 and by the assumption, for any subset J of $\{1, \ldots, r-1\}$, the sequence $\left(x_{j}\right)_{j \in J}$ can be extended to an M-sequence in dimension $>s$ in I of length r. Therefore for any subset J of $\{1, \ldots, r-1\}$, there exists an $\left(M / \sum_{j \in J} x_{j} M\right)$-regular element in dimension $>s$ in I. It follows that $I \nsubseteq \mathfrak{p}$ for all $\mathfrak{p} \in\left(\operatorname{Ass}_{R}\left(M / \sum_{j \in J} x_{j} M\right)\right)_{\geq s+1}$ and all subsets J of $\{1, \ldots, r-1\}$. By Prime Avoidance, we can choose an element $x_{r} \in I$ such that $x_{r} \notin \mathfrak{p}$ for all $\mathfrak{p} \in C_{r}$, where

$$
C_{r}:=\left(\bigcup_{J \subseteq\{1, \ldots, r-1\}} \operatorname{Ass}_{R}\left(M / \sum_{j \in J} x_{j} M\right)\right)_{\geq s+1} \cup\left(\bigcup_{J \subseteq\{1, \ldots, r-1\}} \operatorname{Ass}_{R}\left(M / \sum_{j \in J} x_{j} M\right) \backslash \operatorname{Var}(I)\right) .
$$

We first show that x_{1}, \ldots, x_{r} is an unconditioned M-sequence in dimension $>s$. Let $\sigma \in \mathbb{S}_{r}$ be a permutation of $1, \ldots, r$. Assume that $x_{\sigma(1)}, \ldots, x_{\sigma(r)}$ is not an M-sequence in dimension $>s$. Let $n \in\{1, \ldots, r\}$ be the least integer such that $x_{\sigma(1)}, \ldots, x_{\sigma(n)}$ is not an M-sequence in dimension $>s$. Then $r=\sigma(i)$ for some $i<n$ by our choice
of x_{r}, and there is some $\mathfrak{p} \in\left(\operatorname{Ass}_{R}\left(M /\left(x_{\sigma(1)}, \ldots, x_{\sigma(n-1)}\right) M\right)\right)_{\geq s+1}$ such that $x_{\sigma(n)} \in \mathfrak{p}$. So $x_{\sigma(1)}, \ldots, x_{\sigma(n)} \in \mathfrak{p}$ and $\frac{x_{\sigma(1)}}{1}, \ldots, \frac{x_{\sigma(n)}}{1}$ is not a regular sequence w.r.t. $M_{\mathfrak{p}}$. Therefore $\frac{x_{\sigma(1)}}{1}, \ldots, \frac{x_{\sigma(i-1)}}{1}, \frac{x_{\sigma(i+1)}}{1}, \ldots, \frac{x_{\sigma(n)}}{1}, \frac{x_{\sigma(i)}}{1}$ is not a regular sequence w.r.t. $M_{\mathfrak{p}}$. Set $J:=\{j \in \mathbb{N}: j \leq n, j \neq i\}$. As $\operatorname{dim}(R / \mathfrak{p})>s$, we know that $\left(\frac{x_{\sigma(j)}}{1}\right)_{j \in J}$ is a regular sequence w.r.t. $M_{\mathfrak{p}}$. Therefore $\frac{x_{r}}{1}=\frac{x_{\sigma(i)}}{1}$ is not a regular element w.r.t. $M_{\mathfrak{p}} / \sum_{j \in J} x_{\sigma(j)} M_{\mathfrak{p}}$. So, there exists $\mathfrak{q} \in \operatorname{Spec}(R)$ with $\mathfrak{q} \subseteq \mathfrak{p}$ such that $\frac{x_{r}}{1} \in \mathfrak{q} R_{\mathfrak{p}} \in \operatorname{Ass}_{R_{\mathfrak{p}}}\left(M_{\mathfrak{p}} / \sum_{j \in J} x_{\sigma(j)} M_{\mathfrak{p}}\right)$. It follows that $x_{r} \in \mathfrak{q} \in\left(\operatorname{Ass}_{R}\left(M / \sum_{j \in J} x_{\sigma(j)} M\right)\right)_{\geq s+1} \subseteq C_{r}$. This gives a contradiction.

Finally, we need to prove that x_{1}, \ldots, x_{r} is an unconditioned I-filter regular sequence w.r.t. M. Assume that $x_{\sigma(1)}, \ldots, x_{\sigma(r)}$ is not an I-filter regular sequence w.r.t. M for some $\sigma \in \mathbb{S}_{r}$. Let n be the least integer such that $x_{\sigma(1)}, \ldots, x_{\sigma(n)}$ is not an I-filter regular sequence w.r.t. M. By our choice of x_{r}, we have $r=\sigma(i)$ for some $i<n$ and there exists some $\mathfrak{p} \in \operatorname{Ass}_{R}\left(M /\left(x_{\sigma(1)}, \ldots, x_{\sigma(n-1)}\right) M\right) \backslash \operatorname{Var}(I)$ such that $x_{\sigma(n)} \in \mathfrak{p}$. So $x_{\sigma(1)}, \ldots, x_{\sigma(n)} \in \mathfrak{p}$ and $\frac{x_{\sigma(1)}}{1}, \ldots, \frac{x_{\sigma(n)}}{1}$ is not a regular sequence w.r.t. $M_{\mathfrak{p}}$. Therefore $\frac{x_{\sigma(1)}}{1}, \ldots, \frac{x_{\sigma(i-1)}}{1}, \frac{x_{\sigma(i+1)}}{1}, \ldots, \frac{x_{\sigma(n)}}{1}, \frac{x_{\sigma(i)}}{1}$ is not a regular sequence w.r.t. $M_{\mathfrak{p}}$. Set $J:=\{j \in \mathbb{N}: j \leq n, j \neq i\}$. As $\mathfrak{p} \notin \operatorname{Var}(I)$, we know that $\left(\frac{x_{\sigma(j)}}{1}\right)_{j \in J}$ is a regular sequence w.r.t. $M_{\mathfrak{p}}$. Therefore $\frac{x_{r}}{1}=\frac{x_{\sigma(i)}}{1}$ is not a regular element w.r.t. $M_{\mathfrak{p}} / \sum_{j \in J} x_{\sigma(j)} M_{\mathfrak{p}}$. So, there exists some $\mathfrak{q} \in \operatorname{Spec}(R)$ with $\mathfrak{q} \subseteq \mathfrak{p}$ such that $\frac{x_{r}}{1} \in \mathfrak{q} R_{\mathfrak{p}} \in \operatorname{Ass}_{R_{\mathfrak{p}}}\left(M_{\mathfrak{p}} / \sum_{j \in J} x_{\sigma(j)} M_{\mathfrak{p}}\right)$. It follows that $x_{r} \in \mathfrak{q} \in\left(\operatorname{Ass}_{R}\left(M / \sum_{j \in J} x_{\sigma(j)} M\right)\right)_{\geq s+1} \backslash \operatorname{Var}(I) \subseteq C_{r}$, a contradiction.

Proposition 2.6. Let s be a non-negative integer. Let x_{1}, \ldots, x_{t} be an unconditioned M-sequence in dimension $>s$. Then

$$
\left.\left(\bigcup_{n_{1}, \ldots, n_{t} \in \mathbb{N}} \operatorname{Ass}_{R}\left(M /\left(x_{1}^{n_{1}}, \ldots, x_{t}^{n_{t}}\right) M\right)\right)_{\geq s}=\left(\operatorname{Ass}_{R}\left(M /\left(x_{1}, \ldots, x_{t}\right) M\right)\right)\right)_{\geq s}
$$

In particular, the set $\left(\bigcup_{n_{1}, \ldots, n_{t} \in \mathbb{N}} \operatorname{Ass}_{R}\left(M /\left(x_{1}^{n_{1}}, \ldots, x_{t}^{n_{t}}\right) M\right)\right)_{\geq s}$ is finite.

Proof. We prove the result by induction on t. Let $t=1$ and we write $x_{1}=x$. We will show by induction on $n_{1}=n$ that $\left(\operatorname{Ass}_{R}\left(M / x^{n} M\right)\right)_{\geq s} \subseteq \operatorname{Ass}_{R}(M / x M)$. The case $n=1$ is clear.

Let $n>1$ and assume that the result is true for $n-1$. Let $\mathfrak{p} \in\left(\operatorname{Ass}_{R}\left(M / x^{n} M\right)\right)_{\geq s}$. Then $\mathfrak{p} R_{\mathfrak{p}} \in \operatorname{Ass}_{R_{\mathfrak{p}}}\left(M_{\mathfrak{p}} / x^{n} M_{\mathfrak{p}}\right)$. If $\operatorname{dim}(R / \mathfrak{p})>s$ then x is a regular element w.r.t. $M_{\mathfrak{p}}$ and therefore $\mathfrak{p} R_{\mathfrak{p}} \in \operatorname{Ass}_{R_{\mathfrak{p}}}\left(M_{\mathfrak{p}} / x M_{\mathfrak{p}}\right)$. It follows that $\mathfrak{p} \in \operatorname{Ass}_{R}(M / x M)$. Assume that $\operatorname{dim}(R / \mathfrak{p})=s$. From the exact sequence

$$
0 \longrightarrow x^{n-1} M / x^{n} M \longrightarrow M / x^{n} M \longrightarrow M / x^{n-1} M \longrightarrow 0
$$

we have $\mathfrak{p} \in \operatorname{Ass}_{R}\left(M / x^{n-1} M\right) \cup \operatorname{Ass}_{R}\left(x^{n-1} M / x^{n} M\right)$. If $\mathfrak{p} \in \operatorname{Ass}_{R}\left(M / x^{n-1} M\right)$ then by induction $\mathfrak{p} \in \operatorname{Ass}_{R}(M / x M)$. So, assume that $\mathfrak{p} \in \operatorname{Ass}_{R}\left(x^{n-1} M / x^{n} M\right)$. Consider the exact sequence

$$
0 \longrightarrow\left(x^{n} M:_{M} x^{n-1}\right) / x M \longrightarrow M / x M \longrightarrow x^{n-1} M / x^{n} M \longrightarrow 0
$$

Set $K=\left(x^{n} M:_{M} x^{n-1}\right) / x M$. Assume that $\mathfrak{p} \notin \operatorname{Supp}(K)$. Then the above exact sequence shows that $(M / x M)_{\mathfrak{p}} \cong\left(x^{n-1} M / x^{n} M\right)_{\mathfrak{p}}$. Since $\mathfrak{p} \in \operatorname{Ass}_{R}\left(x^{n-1} M / x^{n} M\right)$, it follows that $\mathfrak{p} \in$ $\operatorname{Ass}_{R}(M / x M)$. So, we assume that $\mathfrak{p} \in \operatorname{Supp}(K)$. Note that for any $\mathfrak{q} \in \operatorname{Supp}(M)$ satisfying $\operatorname{dim}(R / \mathfrak{q})>s$, we have $K_{\mathfrak{q}}=0$ as x is a poor regular element w.r.t. $M_{\mathfrak{q}}$. So $\operatorname{dim}(K) \leq s$. Hence \mathfrak{p} is a minimal element in $\operatorname{Supp}(K)$, and hence $\mathfrak{p} \in \operatorname{Ass}_{R}(K) \subseteq \operatorname{Ass}_{R}(M / x M)$. So, the result is true for $t=1$.

Let $t>1$ and assume that the result is true for $t-1$. Let n_{1}, \ldots, n_{t} be arbitrary positive integers. Since x_{t} is an $M /\left(x_{1}^{n_{1}}, \ldots, x_{t-1}^{n_{t-1}}\right) M$-regular element in dimension $>s$, we get by the case $t=1$ that

$$
\left(\operatorname{Ass}_{R}\left(M /\left(x_{1}^{n_{1}}, \ldots, x_{t}^{n_{t}}\right) M\right)\right)_{\geq s} \subseteq \operatorname{Ass}_{R}\left(M /\left(x_{1}^{n_{1}}, \ldots, x_{t-1}^{n_{t-1}}, x_{t}\right) M\right)
$$

Since x_{1}, \ldots, x_{t-1} is an unconditioned $M / x_{t} M$-sequence in dimension $>s$, we have by induction that

$$
\begin{aligned}
\left(\operatorname{Ass}_{R}\left(M /\left(x_{1}^{n_{1}}, \ldots, x_{t-1}^{n_{t-1}}, x_{t}\right) M\right)\right)_{\geq s} & =\left(\operatorname{Ass}_{R}\left(M /\left(x_{t}, x_{1}^{n_{1}}, \ldots, x_{t-1}^{n_{t-1}}\right) M\right)\right)_{\geq s} \\
& \subseteq \operatorname{Ass}_{R}\left(M /\left(x_{1}, \ldots, x_{t}\right) M\right)
\end{aligned}
$$

This proves our claim.
In general, a permutation of an M-sequence in dimension $>s$ is not an M-sequence in dimension $>s$. In particular, a permutation of a generalized regular sequence is not necessarily a generalized regular sequence. For example, let $R=k\left[\left[x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right]\right]$ be the ring of power series in 5 variables over a field k. Let $M=R /\left(x_{1}\right) \cap\left(x_{2}, x_{3}, x_{4}\right)$. Then $\operatorname{dim} M=4$ and x_{5}, x_{2} is a generalized regular sequence w.r.t M, but x_{2}, x_{5} is not a generalized regular sequence w.r.t M. This fact shows that Lemma $2.2(\mathrm{i})$,(ii) of [Nh$]$ is not correct. It follows that the proof of $[\mathrm{Nh}, 3.1]$ is not correct, too. The next corollary is an improvement and also a correction of [$\mathrm{Nh}, 3.1$].

Corollary 2.7. Assume that x_{1}, \ldots, x_{t} is an unconditioned generalized regular sequence w.r.t. M. Then

$$
\left.\bigcup_{n_{1}, \ldots, n_{t} \in \mathbb{N}} \operatorname{Ass}_{R}\left(M /\left(x_{1}^{n_{1}}, \ldots, x_{t}^{n_{t}}\right) M\right) \backslash \operatorname{Max} R \subseteq \operatorname{Ass}_{R}\left(M /\left(x_{1}, \ldots, x_{t}\right) M\right)\right)
$$

In particular, if in addition R is local, then $\bigcup_{n_{1}, \ldots, n_{t} \in \mathbb{N}} \operatorname{Ass}_{R}\left(M /\left(x_{1}^{n_{1}}, \ldots, x_{t}^{n_{t}}\right) M\right)$ is a finite set.

Proof. The proof is immediate by setting $s=1$ in Proposition 2.6.

3 Finiteness results

Remark 3.1. Let $I \subseteq R$ be an ideal with $\operatorname{depth}(I, M)=t$. Then it is well known that

$$
\operatorname{Ass}_{R}\left(\operatorname{Ext}_{R}^{t}(R / I, M)\right)=\operatorname{Ass}_{R}\left(H_{I}^{t}(M)\right)
$$

Lemma 3.2. Let t be a positive integer. Set $P_{t}=\bigcup_{i=0}^{t-1} \operatorname{Supp}\left(\operatorname{Ext}_{R}^{i}(R / I, M)\right)$. Then

$$
\begin{aligned}
& \operatorname{Ass}_{R}\left(\operatorname{Ext}_{R}^{t}\left(R / I^{n}, M\right)\right) \cup P_{t}=\operatorname{Ass}_{R}\left(\operatorname{Ext}_{R}^{t}\left(R /\left(a_{1}^{n_{1}}, \ldots, a_{k}^{n_{k}}\right), M\right)\right) \cup P_{t} \\
& =\operatorname{Ass}_{R}\left(\operatorname{Ext}_{R}^{t}(R / I, M)\right) \cup P_{t}=\operatorname{Ass}_{R}\left(H_{I}^{t}(M)\right) \cup P_{t}
\end{aligned}
$$

for any system of generators $\left(a_{1}, \ldots, a_{k}\right)$ of I and all positive integers n, n_{1}, \ldots, n_{k}.
Proof. Let $\mathfrak{p} \in \operatorname{Supp}(M)$ such that $\mathfrak{p} \notin P_{t}$. Then for any $i<t$ we have

$$
\operatorname{Ext}_{R_{\mathfrak{p}}}^{i}\left(R_{\mathfrak{p}} / I R_{\mathfrak{p}}, M_{\mathfrak{p}}\right) \cong\left(\operatorname{Ext}_{R}^{i}(R / I, M)\right)_{\mathfrak{p}}=0
$$

Therefore depth $\left(I R_{\mathfrak{p}}, M_{\mathfrak{p}}\right) \geq t$. Let n, n_{1}, \ldots, n_{k} be positive integers. It is clear that

$$
\operatorname{depth}\left(I^{n} R_{\mathfrak{p}}, M_{\mathfrak{p}}\right)=\operatorname{depth}\left(I R_{\mathfrak{p}}, M_{\mathfrak{p}}\right)=\operatorname{depth}\left(\left(a_{1}^{n_{1}}, \ldots, a_{k}^{n_{k}}\right) R_{\mathfrak{p}}, M_{\mathfrak{p}}\right)
$$

We first suppose that depth $\left(I R_{\mathfrak{p}}, M_{\mathfrak{p}}\right)>t$. Then the $R_{\mathfrak{p}}-$ modules $\operatorname{Ext}_{R_{\mathfrak{p}}}^{t}\left(R_{\mathfrak{p}} / I^{n} R_{\mathfrak{p}}, M_{\mathfrak{p}}\right)$, $\operatorname{Ext}_{R_{\mathfrak{p}}}^{t}\left(R_{\mathfrak{p}} /\left(a_{1}^{n_{1}}, \ldots, a_{k}^{n_{k}}\right) R_{\mathfrak{p}}, M_{\mathfrak{p}}\right), \operatorname{Ext}_{R_{\mathfrak{p}}}^{t}\left(R_{\mathfrak{p}} / I R_{\mathfrak{p}}, M_{\mathfrak{p}}\right), H_{I R_{\mathfrak{p}}}^{t}\left(M_{\mathfrak{p}}\right)$ are zero. So, \mathfrak{p} does not belong to any of the four sets $\operatorname{Ass}_{R}\left(\operatorname{Ext}_{R}^{t}\left(R / I^{n}, M\right)\right), \operatorname{Ass}_{R}\left(\operatorname{Ext}_{R}^{t}\left(R /\left(a_{1}^{n_{1}}, \ldots, a_{k}^{n_{k}}\right), M\right)\right)$, $\operatorname{Ass}_{R}\left(\operatorname{Ext}_{R}^{t}(R / I, M)\right)$ and $\operatorname{Ass}_{R}\left(H_{I}^{t}(M)\right)$.

Assume that depth $\left(I R_{\mathfrak{p}}, M_{\mathfrak{p}}\right)=t$. Since $\operatorname{rad}(I)=\operatorname{rad}\left(I^{n}\right)=\operatorname{rad}\left(\left(a_{1}^{n_{1}}, \ldots, a_{k}^{n_{k}}\right) R\right)$, we have by Remark 3.1 that

$$
\begin{aligned}
& \operatorname{Ass}_{R_{\mathfrak{p}}}\left(\operatorname{Ext}_{R_{\mathfrak{p}}}^{t}\left(R_{\mathfrak{p}} / I^{n} R_{\mathfrak{p}}, M_{\mathfrak{p}}\right)\right)=\operatorname{Ass}_{R_{\mathfrak{p}}}\left(H_{I^{n} R_{\mathfrak{p}}}^{t}\left(M_{\mathfrak{p}}\right)\right)=\operatorname{Ass}_{R_{\mathfrak{p}}}\left(H_{I R_{\mathfrak{p}}}^{t}\left(M_{\mathfrak{p}}\right)\right) \\
&=\operatorname{Ass}_{R_{\mathfrak{p}}}\left(\operatorname{Ext}_{R_{\mathfrak{p}}}^{t}\left(R_{\mathfrak{p}} / I R_{\mathfrak{p}}, M_{\mathfrak{p}}\right)\right) \\
& \operatorname{Ass}_{R_{\mathfrak{p}}}\left(\operatorname{Ext}_{R_{\mathfrak{p}}}^{t}\left(R_{\mathfrak{p}} /\left(a_{1}^{n_{1}}, \ldots, a_{k}^{n_{k}}\right) R_{\mathfrak{p}}, M_{\mathfrak{p}}\right)\right)=\operatorname{Ass}_{R_{\mathfrak{p}}}\left(H_{I R_{\mathfrak{p}}}^{t}\left(M_{\mathfrak{p}}\right)\right)
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\mathfrak{p} \in \operatorname{Ass}_{R}\left(\operatorname{Ext}_{R}^{t}\left(R / I^{n}, M\right)\right. & \Leftrightarrow \mathfrak{p} \in \operatorname{Ass}_{R}\left(H_{I}^{t}(M)\right) \Leftrightarrow \mathfrak{p} \in \operatorname{Ass}_{R}\left(\operatorname{Ext}_{R}^{t}(R / I, M)\right. \\
& \Leftrightarrow \mathfrak{p} \in \operatorname{Ass}_{R}\left(\operatorname{Ext}_{R}^{t}\left(R /\left(a_{1}^{n_{1}}, \ldots, a_{k}^{n_{k}}\right), M\right) .\right.
\end{aligned}
$$

Now the result follows immediately.

The next lemma follows easily by induction on t using Remark 3.1 and Lemma 3.2.
Lemma 3.3. For any integer $t \geq 0$ we have

$$
\bigcup_{i=0}^{t}\left(\bigcup_{n \in \mathbb{N}} \operatorname{Supp}\left(\operatorname{Ext}_{R}^{i}\left(R / I^{n}, M\right)\right)\right)=\bigcup_{i=0}^{t} \operatorname{Supp}\left(\operatorname{Ext}_{R}^{i}(R / I, M)\right)=\bigcup_{i=0}^{t} \operatorname{Supp}\left(H_{I}^{i}(M)\right)
$$

It should be mentioned that the equalities $\operatorname{Ass}_{R}\left(\operatorname{Ext}_{R}^{t}(R / I, M)\right) \cup P_{t}=\operatorname{Ass}_{R}\left(H_{I}^{t}(M)\right) \cup P_{t}$ in Lemma 3.2 and $\bigcup_{i=0}^{t} \operatorname{Supp}\left(\operatorname{Ext}_{R}^{i}(R / I, M)\right)=\bigcup_{i=0}^{t} \operatorname{Supp}\left(H_{I}^{i}(M)\right)$ in Lemma 3.3 have been proved by Cuong-Hoang $[\mathrm{CH}]$.
Proof of Theorem 1.1. Let $t \leq r$ be a non-negative integer. Set $P_{t}=\bigcup_{i=0}^{t-1} \operatorname{Supp}\left(\operatorname{Ext}_{R}^{i}(R / I, M)\right)$. Then $P_{t}=\bigcup_{i=0}^{t-1} \operatorname{Supp}\left(H_{I}^{i}(M)\right)$ by Lemma 3.3. Therefore, by our assumption, $\operatorname{dim}(R / \mathfrak{p}) \leq s$ for all $\mathfrak{p} \in P_{t}$. Now, let $\mathfrak{p} \in\left(T^{t}(I, M)\right)_{\geq s} \cup\left(T^{t}(\underline{a}, M)\right)_{\geq s}$. If $\operatorname{dim}(R / \mathfrak{p})>s$ then $\mathfrak{p} \notin P_{t}$. So, we get by Lemma 3.2 that $\mathfrak{p} \in \operatorname{Ass}_{R}\left(\operatorname{Ext}_{R}^{t}(R / I, M)\right)$.
 $\mathfrak{p} \notin \operatorname{Ass}_{R}\left(\operatorname{Ext}_{R}^{t}(R / I, M)\right)$ then $\mathfrak{p} \in P_{t}$, and hence \mathfrak{p} is a minimal prime ideal of $\operatorname{Ext}_{R}^{i}(R / I, M)$ for some $i<t$. Therefore $\mathfrak{p} \in \operatorname{Ass}_{R}\left(\operatorname{Ext}_{R}^{i}(R / I, M)\right)$ for some $i<t$. Thus, $T^{t}(I, M)$ and $T^{t}(\underline{a}, M)$ are subsets of $\bigcup_{i=0}^{t} \operatorname{Ass}\left(\operatorname{Ext}_{R}^{i}(R / I, M)\right)$.
Proof of Theorem 1.2. Let $t \leq r$ be a non-negative integer. Let $\mathfrak{p} \in\left(T^{t}(I, M)\right)_{\geq s} \cup$ $\left(T^{t}(\underline{a}, M)\right)_{\geq s}$. Let $i<t$. Since $\operatorname{dim}\left(\operatorname{Supp}\left(H_{I}^{i}(M)\right)\right) \leq s$, any prime ideal in $\left(\operatorname{Supp}\left(H_{I}^{i}(M)\right)\right)_{\geq s}$ is minimal in $\operatorname{Supp}\left(H_{I}^{i}(M)\right)$ and hence associated to $H_{I}^{i}(M)$. It follows that

$$
\left(\operatorname{Supp}\left(H_{I}^{i}(M)\right)\right)_{\geq s}=\left(\operatorname{Ass}_{R}\left(H_{I}^{i}(M)\right)\right)_{s} \text { for all } i<t
$$

So, we get by Lemma 3.2 and Lemma 3.3 that $\mathfrak{p} \in\left(\bigcup_{i=0}^{t-1} \operatorname{Ass}_{R}\left(H_{I}^{i}(M)\right)\right)_{s} \cup\left(\operatorname{Ass}_{R}\left(H_{I}^{t}(M)\right)\right)_{\geq s}$. As $x_{1}, \ldots, x_{r} \in I$ is an unconditioned I-filter regular sequence w.r.t. M, we have by 2.2 that $H_{I}^{i}(M) \cong H_{I}^{0}\left(H_{\left(x_{1}, \ldots, x_{i}\right) R}^{i}(M)\right)$ for all $i=1, \ldots, t$. Therefore, for each $i=1, \ldots, t$, we have

$$
\operatorname{Ass}_{R} H_{I}^{i}(M) \subseteq \operatorname{Ass}_{R}\left(H_{\left(x_{1}, \ldots, x_{i}\right) R}^{i}(M)\right) \subseteq \bigcup_{n \in \mathbb{N}} \operatorname{Ass}_{R}\left(M /\left(x_{1}^{n}, \ldots, x_{i}^{n}\right) M\right)
$$

As x_{1}, \ldots, x_{r} is an unconditioned M-sequence in dimension $>s$, we get by Proposition 2.6 that

$$
\left(\bigcup_{n \in N} \operatorname{Ass}_{R}\left(M /\left(x_{1}^{n}, \ldots, x_{i}^{n}\right) M\right)\right)_{s}=\left(\operatorname{Ass}_{R}\left(M /\left(x_{1}, \ldots, x_{i}\right) M\right)\right)_{s}
$$

for all $i=1, \ldots, t$, and

$$
\left(\bigcup_{n \in N} \operatorname{Ass}_{R}\left(M /\left(x_{1}^{n}, \ldots, x_{t}^{n}\right) M\right)\right)_{\geq s+1}=\left(\operatorname{Ass}_{R}\left(M /\left(x_{1}, \ldots, x_{t}\right) M\right)\right)_{\geq s+1}
$$

If $\operatorname{dim}(R / \mathfrak{p})>s$ then $t=r$ and $\mathfrak{p} \in \operatorname{Ass}_{R} H_{I}^{t}(M)$, hence $\mathfrak{p} \in\left(\operatorname{Ass}_{R}\left(M /\left(x_{1}, \ldots, x_{t}\right) M\right)\right)_{\geq s+1}$. If $\operatorname{dim}(R / \mathfrak{p})=s$ then

$$
\mathfrak{p} \in \bigcup_{i=0}^{t}\left(\operatorname{Ass}_{R}\left(H_{I}^{i}(M)\right)\right)_{s}=\bigcup_{i=0}^{t}\left(\operatorname{Ass}_{R}\left(M /\left(x_{1}, \ldots, x_{i}\right) M\right)\right)_{s}
$$

Now the result follows immediately.
Replacing s by 1 in Theorems 1,2 and on use of Lemma 3.2 we get the following result.
Corollary 3.4. Let $r>0$ be an integer such that $\operatorname{dim}\left(\operatorname{Supp}\left(H_{I}^{i}(M)\right)\right) \leq 1$ for all $i<r$. Let $\underline{a}=\left(a_{1}, \ldots, a_{k}\right)$ be a system of generators of I. Then
(a) For any integer $t \leq r$, the sets $T^{t}(I, M)$ and $T^{t}(\underline{a}, M)$ are contained in the set

$$
\bigcup_{i=0}^{t} \operatorname{Ass}_{R}\left(\operatorname{Ext}_{R}^{i}(R / I, M)\right) \cup\left(\operatorname{Max}(R) \cap \bigcup_{i=0}^{t-1} \operatorname{Supp}\left(H_{I}^{i}(M)\right)\right)
$$

(b) Let $x_{1}, \ldots, x_{r} \in I$ be an unconditioned generalized regular sequence with respect to M which is an unconditioned I-filter regular sequence with respect to M (such sequences exist by Proposition 2.5). Then for any integer $t \leq r$, the sets $T^{t}(I, M)$ and $T^{t}(\underline{a}, M)$ are contained in the set $\left(\operatorname{Ass}_{R}\left(M /\left(x_{1}, \ldots, x_{t}\right) M\right)\right)_{\geq 2} \cup\left(\bigcup_{i=0}^{t} \operatorname{Ass}_{R}\left(M /\left(x_{1}, \ldots, x_{i}\right) M\right)\right)_{1} \cup \operatorname{Max}(R)$.
Remark 3.5. Let R be local. In Khashyarmanesh [Kh], it is shown that if $H_{I}^{i}(M)$ is of finite support for all $i<r$ then the set $\left(T^{r}(I, M)\right)_{\geq 2}=\left\{\mathfrak{p} \in T^{r}(I, M): \operatorname{dim} R / \mathfrak{p}>1\right\}$ is finite. Corollary 3.4 shows that even $T^{r}(I, M)$ is a finite set.

Setting $s=0$ in Theorems 1,2 we get the following result.
Corollary 3.6. Let $r>0$ be an integer such that $\operatorname{dim}\left(\operatorname{Supp}\left(H_{I}^{i}(M)\right)\right) \leq 0$ for all $i<r$. Let $\underline{a}=\left(a_{1}, \ldots, a_{k}\right)$ be a system of generators of I. Then
(a) For any integer $t \leq r$, the sets $T^{t}(I, M)$ and $T^{t}(\underline{a}, M)$ are contained in the finite set $\bigcup_{i=0}^{t} \operatorname{Ass}_{R}\left(\operatorname{Ext}_{R}^{i}(R / I, M)\right)$.
(b) Let $x_{1}, \ldots, x_{r} \in I$ be an unconditioned filter regular sequence with respect to M which is an unconditioned I-filter regular sequence with respect to M (such sequences exist by Proposition 2.5). Then for any integer $t \leq r$, the sets $T^{t}(I, M)$ and $T^{t}(\underline{a}, M)$ are contained in the finite set $\left(\operatorname{Ass}_{R}\left(M /\left(x_{1}, \ldots, x_{t}\right) M\right)\right)_{\geq 1} \cup \bigcup_{i=0}^{t} \operatorname{Ass}_{R}\left(M /\left(x_{1}, \ldots, x_{i}\right) M\right)$.

Acknowledgment. The second author is deeply grateful to the Institute of Mathematics of the University of Zürich (Switzerland) for the support while completing this work.

References

[M] M. Brodmann, Asymptotic stability of $\operatorname{Ass}_{R}\left(M / I^{n} M\right)$, Proc. Amer. Math. Soc., (1) 74 (1979), 16-18.
[BS] M. Brodmann and R. Y. Sharp, "Local cohomology: an algebraic introduction with geometric applications", Cambridge University Press, 1998.
[CH] N. T. Cuong and N. V. Hoang, Some finite properties of generalized local cohomology modules, Proceeding of the second Japan-Vietnam joint seminar on Commutative Algebra, March 20-26, 2006, Meiji University.
[Cts] N. T. Cuong, P. Schenzel and N. V. Trung, Verallgemeinerte Cohen-Macaulay Moduln, Math. Nachr, 85 (1978), 57-73.
[Ka] M. Katzman, An example of an infinite set of associated primes of a local cohomology module, J. Algebra, 252 (2002), 161-166.
[Kh] K. Khashyarmanesh, On the finiteness properties of $\bigcup_{i} \operatorname{Ass}_{R}\left(\operatorname{Ext}_{R}^{i}\left(R / \mathfrak{a}^{i}, M\right)\right)$, Comm. Algebra, 34 (2006), 779-784.
[NS] U. Nagel and P. Schenzel, Cohomological annihilators and Castelnuovo-Mumford regularity, In: Commutative Algebra: Syzygies, Multiplicities, and Birational Algebra (South Hadley, 1992). Contemp. Math., 159. Amer. Math. Soc., (1994), 307-328.
[Nh] L. T. Nhan, On generalized regular sequences and the finiteness for associated primes of local cohomology modules, Comm. Algebra, 33 (2005), 793-806.
[MS] L. Melkersson and P. Schenzel, Asymptotic prime ideals related to derived functors, Proc. Amer. Math. Soc., (4) 117 (1993), 935-938.
[Sh] R. Y. Sharp, Asymptotic behaviour of certain sets of attached prime ideals, J. London Math. Soc., (2) 34 (1986), 212-218.

Institute of Mathematics, University of Zürich, Zürich, Switzerland
E-mail address: brodmann@math.unizh.ch
Natural Sciences College, Thai Nguyen University, Thai Nguyen, Vietnam
E-mail address: trtrnhan@yahoo.com

[^0]: ${ }^{1}$ Key words and phrases: Supports of local cohomology modules, associated primes, filter regular sequences, M-sequences in dimension $>s$.
 2000 Subject Classification: 13D45, 13E05.
 The second author was partially supported by the Swiss National Science Foundation (Project No 20-103491/1).

