

Abstract—Wireless Sensor Networks (WSNs)

have been the subject of intensive research over the

last years. WSNs consist of a large number of

sensor nodes, and are used for various applications

such as building monitoring, environment control,

wild-life habitat monitoring, forest fire detection,

industry automation, military, security, and health-

care. Operating system (OS) support for WSNs

plays a central role in building scalable distributed

applications that are efficient and reliable. Over

the years, we have seen a variety of operating

systems (OSes) emerging in the sensor network

community to facilitate developing WSN

applications. In this paper, we present OS for

WSNs. We begin by presenting the major issues for

the design of OS for WSNs. Then, we examine some

existing OSes for WSNs, including TinyOS,

Contiki, and LiteOS. Finally, we present a

comparison of these OSes by examining some

important OS features. We believe that our work

will help both OS developers and OS users. With

OS developers, they will know what has worked in

previous OSes and what has not. With OS users,

they know the features of existing sensor network

OSes, so they can select a sensor network OS that is

the most appropriate for their application.

I. INTRODUCTION

WSN is generally composed of a centralized

station (sink) and tens, hundreds, or perhaps

thousands of tiny sensor nodes. With the integration of

information sensing, computation, and wireless

communication, these devices can sense the physical

phenomenon, (pre-)process the raw information, and

share the processed information with their neighboring

nodes.

Typical sensor nodes are equipped with a sensor, a

microprocessor or microcontroller, a memory, a radio

transceiver, and a battery. Therefore, these hardware

components should be organized in a way that makes

them work correctly and effectively without a conflict

in support of the specific applications for which they

are designed. Each sensor node needs an OS that can

control the hardware, provide hardware abstraction to

application software, and fill in the gap between

applications and the underlying hardware.

The basic functionalities of an OS include resource

abstractions for various hardware devices, interrupt

management and task scheduling, concurrency control,

and networking support. Based on the services

provided by the OS, application programmers can

conveniently use high-level application programming

interfaces (APIs) independent of the underlying

hardware.

The traditional OS is system software that operates

between application software and hardware and is

often designed for workstations and PCs with plenty of

resources. This is usually not the case with sensor

nodes in WSNs. There are also embedded OSes such

as VxWorks [1] and WinCE [2], none of which is

specially designed for data-centric WSNs with

constrained resources. Sensors usually have a slow

processor and small memory, different from most

current systems. These parameters should be kept in

mind in the process of OS design for WSN nodes.

In this paper, we identify several major issues for

the design of OS for WSNs. By examining some

existing OSes for WSNs, we hope that our work may

allow research community to know the strengths and

weaknesses of a number of different OSes.

The rest of this paper is organized as follows.

Section II presents the major issues for the design of

sensor network OS. Section III examines some

existing OSes for WSNs, including TinyOS, Contiki,

and LiteOS. Section IV presents a comparison of these

OSes. Finally, we conclude this paper in Section V.

II. OPERATING SYSTEM DESIGN ISSUES

Traditional OSes are system software, including

programs that manage computing resources, control

peripheral devices, and provide software abstraction to

A Comparative Study on Operating System for

Wireless Sensor Networks

Thang Vu Chien, Hung Nguyen Chan, and Thanh Nguyen Huu

Thai Nguyen University of Information and Communication Technology Quyet Thang Commune, Thai

Nguyen City, Vietnam

E-mail: vcthang@ictu.edu.vn, chanhung@mail.hut.edu.vn, thanhnh@mail.hut.edu.vn

A

ICACSIS 2011 ISBN: 978-979-1421-11-9

73

the application software. Traditional OS functions are

therefore to manage processes, memory, CPU time,

file system, and devices. This is often implemented in

a modular and layered fashion, including a lower layer

of kernels and a higher layer of system libraries.

Traditional OSes are not suitable for WSNs because

WSNs have constrained resources and diverse data-

centric applications, in addition to a variable topology.

WSNs need a new type of operating system,

considering their special characteristics. There are

several issues to consider when designing sensor

network OS.

A. Process Management and Scheduling

The traditional OS provides process protection by

allocating a separate memory space (stack) for each

process. Each process maintains data and information

in its own space. But this approach usually causes

multiple data copying and context switching between

processes. This is obviously not energy efficient for

WSNs. Sensor network OSes should provide efficient

resource management mechanisms in order to allocate

microprocessor time and limited memory. The CPU

time and limited memory must be scheduled and

allocated for processes carefully to guarantee fairness

(or priority if required).

B. Memory Management

Memory is often allocated exclusively for each

process/task in traditional OSes, which is helpful for

protection and security of the tasks. Since sensor nodes

have small memory, another approach, sharing, can

reduce memory requirements.

C. Kernel Model

The event-driven and finite state machine (FSM)

models have been used to design microkernels for

WSNs. The event-driven model may serve WSNs well

because they look like event-driven systems. An event

may comprise receiving a packet, transmitting a

packet, detection of an event of interest, alarms about

energy depletion of a sensor node, and so on. The

FSM-based model is convenient to realize

concurrency, reactivity, and synchronization.

D. Energy Efficiency

Sensor nodes provide very limited battery lifetime.

On the other hand, guaranteeing sensor networks to

operate for 3 to 5 years is a very desirable objective.

Sensor network OS should support power

management, which helps to extend the system lifetime

and improve its performance. For example, the

operating system may schedule the process to sleep

when the system is idle, and to wake up with the

advent of an incoming event or an interrupt from the

hardware.

E. Application Program Interface

Sensor nodes need to provide modular and general

APIs for their applications. The APIs should enable

applications access the underlying hardware. This may

allow access and control of hardware directly, to

optimize system performance.

F. Code Upgrading and Reprogramming

Since the behavior of sensor nodes and their

algorithms may need to be adjusted either for their

functionality or for energy conservation, the operating

system should be able to reprogram and upgrade.

G. Small Footprint

The limited memory of only a few kilobytes on a

sensor node necessitates the OS to be designed with a

very small footprint. It is a fundamental characteristic

of a sensor network OS and is the primary reason why

so many sophisticated embedded OSes can not be

easily ported to sensor nodes.

H. Real-Time Guarantee

As most sensor network applications such as

surveillance tend to be time-sensitive in nature where

packets must be relayed and forwarded on a timely

basis, real-time guarantee is a necessary requirement

for such applications.

I. Reliability

In most applications, sensor networks are deployed

once and intended to operate unattended for a long

period of time. OS reliability is of great importance to

facilitate developing complex WSN software, ensuring

the correct functioning of WSN systems.

III. EXISTING OPERATING SYSTEMS FOR WIRELESS

SENSOR NETWORKS

Over the years, we have seen various OSes

emerging in the sensor network community [3]. The

most prestigious works include TinyOS [4], Contiki

[5], SOS [6], Mantis OS [7], Nano-RK [8], RETOS

[9] and LiteOS [10]. In this paper, we present only

TinyOS, Contiki (many interested OS users), and

LiteOS (the newest sensor network OS).

A. TinyOS

TinyOS [4], developed in UC Berkeley, is perhaps

the earliest sensor network OS in the literature [11].

The design of TinyOS allows application software to

access hardware directly when required. TinyOS is a

tiny microthreaded OS that attempts to address two

issues: how to guarantee concurrent data flows among

hardware devices, and how to provide modularized

components with little processing and storage

overhead. These issues are important since TinyOS is

required to manage hardware capabilities and

resources effectively while supporting concurrent

operation in an efficient manner. TinyOS uses an

ICACSIS 2011 ISBN: 978-979-1421-11-9

74

event-based model to support high levels of concurrent

application in a very small amount of memory.

Compared with a stack-based threaded approach,

which would require that stack space be reserved for

each execution context, and because the switching rate

of execution context is slower than in an event-based

approach, TinyOS achieves higher throughput. It can

rapidly create tasks associated with an event, with no

blocking or polling. When CPU is idle, the process is

maintained in a sleep state to conserve energy.

Fig. 1 illustrates the basic architecture of TinyOS.

TinyOS includes a tiny scheduler and a set of

components.

Fig. 1. TinyOS architecture.

The scheduler schedules operation of those

components. Each component consists of four parts:

command handlers, event handlers, an encapsulated

fixed-size frame, and a group of tasks. Commands and

tasks are executed in the context of the frame and

operate on its state. Each component will declare its

commands and events to enable modularity and easy

interaction with other components. The current task

scheduler in TinyOS is a simple FIFO mechanism

whose scheduling data structure is very small, but it is

power efficient since it allows a processor to sleep

when the task queue is empty and while the peripheral

devices are still running. The frame is fixed in size and

is assigned statically. It specifies the memory

requirements of a component at compile time and

removes the overhead from dynamic assignment.

Commands are nonblocking requests made to the low-

level components. Therefore, commands do not have

to wait a long time to be executed. A command

provides feedback by returning status indicating

whether it was successful (e.g., in the case of buffer

overrun or of timeout). A command often stores

request parameters into its frame and conditionally

assigns a task for later execution. The occurrence of a

hardware event will invoke event handlers. An event

handler can store information in its frame, assign tasks,

and issue high-level events or call low-level

commands. Both commands and events can be used to

perform a small and usually fixed amount of work as

well as to preempt tasks. Tasks are a major part of

components. Like events, tasks can call low-level

commands, issue high-level events, and assign other

tasks. Through groups of tasks, TinyOS can realize

arbitrary computation in an event-based model. The

design of components makes it easy to connect various

components in the form of function calls. In order to

provide a better support for the component

architecture and execution model of TinyOS, the nesC

language [12] was designed for programming based on

TinyOS. TinyOS has a component-based programming

model, codified by the nesC language.

This WNS operating system defines three types of

components: hardware abstractions, synthetic

hardware, and high-level software components.

Hardware abstraction components are the lowest-level

components. They are actually the mapping of

physical hardware such as Input/Output (I/O) devices,

a radio transceiver, and sensors. Each component is

mapped to a certain hardware abstraction. Synthetic

hardware components are used to map the behavior of

advanced hardware and often sit on the hardware

abstraction components. TinyOS designs a hardware

abstract component called the Radio-Frequency

Module (RFM) for the radio transceiver, and a

synthetic hardware component called radio byte, which

handles data into or out of the underlying RFM.

TinyOS supports a wide range of hardware

platforms and has been used on several generations of

sensor nodes. Supported processors include the Texas

Instruments MSP430 and the Atmel AVR. TinyOS

applications may be compiled to run on any of these

platforms without modification.

B. Contiki Operating System

The Contiki operating system [5] is an open source

operating system for networked embedded systems in

general, and wireless sensor nodes in particular. It is

developed by a team of developers from the industry

and academia. The Contiki project is lead by Adam

Dunkels.

Typically, a running Contiki system consists of the

kernel, libraries, the program loader, and a set of

processes. Communication between processes always

goes through the kernel, which does not provide a

hardware abstraction layer, but lets device drivers and

applications communicate directly with the hardware.

A process is defined by an event handler function

and an optional poll handler function. The process

state is held in the process' private memory and the

kernel only keeps a pointer to the process state. All

processes share the same address space and do not run

in different protection domains. Interprocess

communication is done by posting events.

Looking at it from a higher perspective, the Contiki

system is partitioned into two parts: the core and the

loaded programs as shown in Fig. 2. Typically, the

core consists of the Contiki kernel, the program loader,

the most commonly used parts of the language run-

time and support libraries, and a communication stack

with device drivers for the communication hardware.

ICACSIS 2011 ISBN: 978-979-1421-11-9

75

The core is compiled into a single binary image and is

usually not modified after deployment, although it is

possible to use a special boot loader to overwrite or

patch the core. Programs are loaded into the system by

the program loader. The program loader is in charge of

loading/unloading the programs into the system either

by using the communication stack or directly attached

storage (such as EEPROM).

Fig. 2. Contiki system.

The Contiki kernel consists of a lightweight event

scheduler that dispatches events to running processes

and periodically calls processes' polling handlers. All

program execution is triggered either by events

dispatched by the kernel or through the polling

mechanism. The kernel does not preempt an event

handler once it has been scheduled. The kernel

supports two kinds of events: asynchronous and

synchronous events. In addition to the events, the

kernel provides a polling mechanism. Polling can be

seen as high priority events that are scheduled in-

between each asynchronous event.

Contiki was the first operating system for wireless

sensor nodes that provided IP communication with the

uIP TCP/IP stack. In 2008, the Contiki system

incorporated uIPv6, the world’s smallest IPv6 stack.

The footprints of the uIP and uIPv6 stacks are small:

less than 5 kB for the uIP stack and approximately 11

kB for uIPv6. This makes them suitable for use in the

constrained environment of a wireless sensor node.

Both the Contiki system and applications for the

system are implemented in the C programming

language. Because Contiki is implemented in C, it is

highly portable. Contiki has been ported to a number

of microcontroller architectures, including the Texas

Instruments MSP430 and the Atmel AVR.

C. LiteOS

LiteOS [10], developed in the University of Illinois

at Urbana Champaign, is designed to provide a

traditional Unix-like environment for programming

WSN applications. It includes: a hierarchical file

system and a wireless shell interface for user

interaction using UNIX-like commands; kernel

support for dynamic loading and native execution of

multithreaded applications; and online debugging,

dynamic memory, and file system assisted

communication stacks. LiteOS also supports software

updates through a separation between the kernel and

user applications, which are bridged through a suite of

system calls.

Fig. 3. LiteOS architecture.

Fig. 3 shows the overall architecture of the LiteOS

operating system, partitioned into three subsystems:

LiteShell, LiteFS, and the Kernel. Implemented on the

base station PC side, the LiteShell subsystem interacts

with sensor nodes (motes) only when a user is present.

Therefore, LiteShell and LiteFS are connected with a

dashed line in this figure.

The LiteShell subsystem provides Unix-like

commandline interface to motes. This shell runs on the

base station PC side. Therefore, it is a front-end that

interacts with the user. The motes do not maintain

command-specific state, and only respond to translated

messages (represented by compressed tokens) from the

shell, which are sufficiently simple to parse.

The interfaces of LiteFS provide support for both

file and directory operations. The APIs of LiteFS can

be exploited in two ways; either by using shell

commands interactively, or by using application

development libraries.

The kernel subsystem of LiteOS takes the thread

approach, but it also allows user applications to handle

events using callback functions for efficiency. It

implements both priority-based scheduling and round-

robin scheduling in the kernel. It also support dynamic

loading and un-loading of user applications, as well as

a suite of system calls for the separation between

kernel and applications.

The LiteOS 2.0 is the latest version of LiteOS. It

runs on the following platforms: MicaZ as target

board, and MIB510/MIB520 as programming boards.

Unlike 1.0, LiteOS 2.0 is closely integrated with AVR

Studio 5.0. This brings multiple advantages, such as

IDE editing, debugging, and built-in JTAG support.

Due to a problem of compatiability between IRIS and

AVR Studio, IRIS mote support will be added in

version 2.1.

ICACSIS 2011 ISBN: 978-979-1421-11-9

76

IV. COMPARISON

In this section, we will present a comparison

between TinyOS, Contiki, and LiteOS by examining

some important OS features (as summarized in Table

I).

A. Static/Dynamic System

TinyOS is a static system, so application

programmers must allocate all of the resources at

design-time. On the other hand, Contiki and LiteOS

are dynamic systems, and application programmers

can allocate and deallocate resources at run-time.

Dynamic systems are more flexible, and thus are more

suitable for dynamically changing environments.

B. Monolithic/Modular System

Whereas TinyOS is a monolithic system, Contiki

and LiteOS are modular systems. In monolithic

systems, an application is compiled with the OS as a

monolithic program. On the other hand, in modular

systems, it is compiled into an individual program

module that is loadable by the OS kernel. Modular

systems are more flexible when the individual

application needs to be frequently modified through

network reprogramming.

C. Networking Support

Networking support in sensor network OSes

provides communication schemes between sensor

nodes. TinyOS uses a lightweight Active Message

(AM) based communication stack. Contiki contains

two communication stacks: uIP and Rime [13]. uIP is a

small RFC-compliant TCP/IP stack that makes it

possible for Contiki to communicate over the Internet.

Recently, Contiki additionally implements uIPv6 that

supports IPv6 for WSNs. Rime is a lightweight

communication stack designed for low power radios.

Rime provides a wide range of communication

primitives, from best-effort local area broadcast, to

reliable multi-hop bulk data flooding. LiteOS provides

additional support for communications of files among

a set of sensor nodes, using traditional Unix-like shell

commands.

D. Event Based Programming

In event based programming systems, application

programmers must manually maintain the application

state and use split-phase I/Os. Event based

programming systems are suitable for applications that

are highly responsive; more importantly, they incur a

very small implementation overhead and represent a

cost-effective solution for sensor nodes with severe

resource constraints. TinyOS, Contiki and LiteOS

support event based programming.

E. Multi-Threading Support

In multi-threaded systems, application programmers

can use the traditional thread-like programming style.

Hence multi-threaded systems are more familiar to

most programmers and are typically considered more

user-friendly than event-driven systems. There are

number of projects that aim to enhance the event-

driven systems by providing multi-threading support.

For example, TinyThread [14], TOSThreads [15] are

thread libraries based on TinyOS; Contiki supports

preemptive multi-threading via a library on top of the

event-driven kernel [5], and it also implements a

lightweight threading mechanism called protothreads

[16]. LiteOS has a multi-threaded kernel to run

applications as threads concurrently [10].

F. Wireless Reprogramming

Reprogramming support allows developers are able

to install or update a new application to a network of

sensor nodes wirelessly. Deluge [17] is the standard

reprogramming mechanism for TinyOS. Because of

TinyOS’s static design principle, applications are

disseminated with the OS kernel as a full image. This

approach incurs a large dissemination overhead

because of the kernel overhead. To address this issue,

FlexCup [18] supports dynamic linking and loading

TinyOS binary components, thus allows code update

on a modular basis. The dynamic linking and loading

mechanism is natively supported by Contiki [5] and

LiteOS [10].

G. File Systems

With TinyOS, Matchbox [19] and ELF [20] provide

single-level file organizations and basic abstractions

for file operations such as reading and writing. Contiki

provides a flash-based file system, Coffee [21], for

storing data inside the sensor network. The file system

allows multiple files to coexist on the same physical

on-board flash memory. LiteOS supports hierarchical

file organization and wireless shell interface for user

interaction using UNIX-like commands [10].

V. CONCLUSION

In this paper, we presented OS for WSNs and

several major issues for the design of sensor network

OS. By examining some existing sensor network OSes,

we know the strengths and weaknesses of a number of

different OSes. The contributions of this paper are

twofold. First, we identify several major issues for the

design of sensor network OS, such as memory

requirement, process management and scheduling,

kernel model, generic application programming

interfaces, effective code distribution and upgrades,

energy-efficient, real-time guarantee, and reliability.

Second, our work may allow research community to

know the features of a number of different OSes. This

work is valuable with both OS developers and OS

users. With OS developers, they will know what has

worked in previous OSes and what has not. With OS

users, they know the features of existing sensor

ICACSIS 2011 ISBN: 978-979-1421-11-9

77

TABLE I.

A COMPARISON BETWEEN TINYOS, CONTIKI AND LITEOS

Features TinyOS Contiki LiteOS

Publication (Year) ASPLOS (2000) EmNets (2004) IPSN (2008)

Website www.tinyos.net www.sics.se/ contiki www.liteos.net

Static/Dynamic System Static Dynamic Dynamic

Monolithic/Modular

System
Monolithic Modular Modular

Networking Support Active Message uIP. uIPv6, Rime File-Assisted

Real-Time Guarantee No No No

Language Support nesC C LiteC++

Event Based

Programming
Yes Yes

Yes (through callback

functions)

Multi-Threading

Support
Partial (through TinyThreads)

Yes (also supports

Protothreads)
Yes

Wireless

reprogramming
Yes Yes Yes

File Sytem Single level (ELF, Matchbox) Coffee Hierarchical Unix-like

Platform Support
Mica, Mica2, MicaZ, TelosB, Tmote, XYZ,

IRIS, Tinynode, Eyes, Shimmer

Tmote, TelosB, ESB, AVR

MCU, MSP430 MCU

MicaZ, IRIS, AVR

MCU

Simulator TOSSIM, Power Tossim Cooja, MSPSim, Netsim Through AVRORA

network OSes, so they can select a sensor network OS

that is the most appropriate for their application.

REFERENCES

[1] Vxwork. [Online]. Available:

http://www.windriver.com/products/vxworks/

[2] WinCE. [Online]. Available:

http://www.microsoft.com/windowsembedded/en-

us/windows-embedded.aspx

[3] Lalit Saraswat, Pankaj Singh Yadav, “A comparative analysis

of wireless sensor network operating systems,” Int J Engg

Techsci Vol 1(1) 2010, 41-47.

[4] TinyOS. [Online]. Available: http://tinyos.net/

[5] A. Dunkels, B. Grönvall, and T. Voigt, “Contiki – a

lightweight and flexible operating system for tiny networked

sensors,” in Proc. EmNets, 2004.

[6] C.-C. Han, R. Kumar, R. Shea, E. Kohler, and M. Srivastava,

“A dynamic operating system for sensor nodes,” in Proc.

ACM MobiSys, 2005.

[7] S. Bhatti, J. Carlson, H. Dai, J. Deng, J. Rose, A. Sheth, B.

Shucker, C. Gruenwald, A. Torgerson, and R. Han, “MANTIS

OS: An embedded multithreaded operating system for wireless

micro sensor platforms,” ACM/Kluwer Mobile Netw. Appl. J.

(MONET), Special Issue Wireless Sensor Netw., vol. 10, pp.

563–579, 2005.

[8] A. Eswaran, A. Rowe, and R. Rajkumar, “Nano-RK: An

energy-aware resource-centric RTOS for sensor networks,” in

Proc. IEEE RTSS, 2005.

[9] H. Cha, S. Choi, I. Jung, H. Kim, and H. Shin, “RETOS:

Resilient, expandable, and threaded operating system for

wireless sensor networks,” in Proc. ACM/IEEE IPSN, 2007.

[10] Q. Cao, T. F. Adbelzaher, and J. A. Stankovic, “The LiteOS

operating system: towards Unix-like abstractions for wireless

sensor networks,” in Proc. ACM/IEEE IPSN, 2008.

[11] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K.

Pister, “System Architecture Directions for Networked

Sensors,” in Proc. ACM ASPLOS, 2000.

[12] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D.

Culler, “The nesC language: A holistic approach to networked

embedded systems,” in Proc. ACM PLDI, 2003.

[13] Contiki [Online]. Available:

http://www.sics.se/~adam/contiki/docs/

[14] W. P. McCartney and N. Sridhar, “Abstractions for safe

concurrent programming in networked embedded systems,” in

Proc. ACM SenSys, 2006.

[15] T. T. Alliance, “TinyOS 2.1: Adding threads and memory

protection to TinyOS (poster),” in Proc. ACM SenSys, 2008.

[16] A. Dunkels, O. Schmidt, T. Voigt, and M. Ali, “Protothreads:

Simplifying event-driven programming of memory-

constrained embedded systems,” in Proc. ACM SenSys, 2006.

[17] J. W. Hui and D. Culler, “The dynamic behavior of a data

dissemination protocol for network programming at scale,” in

Proc. ACM SenSys, 2004.

[18] P. J. Marrón, M. Gauger, A. Lachenmann, D. Minder, O.

Saukh, and K. Rothermel, “FlexCup: A flexible and efficient

code update mechanism for sensor networks,” in Proc. EWSN,

2006.

[19] D. Gay, “Design of matchbox, the simple filing system for

motes.” [Online]. Available: http://www.tinyos.net/tinyos-

1.x/doc/matchbox-design.pdf

[20] H. Dai, M. Neufeld, and R. Han, “ELF: An effcient log-

structured flash system for micro sensor nodes,” in Proc.

ACM SenSys, 2004.

[21] N. Tsiftes, A. Dunkels, Z. He, and T. Voigt, “Enabling large-

scale storage in sensor networks with the coffee file system,”

in Proc. ACM/IEEE IPSN, 2009.

ICACSIS 2011 ISBN: 978-979-1421-11-9

78

