
Sharan

US $ 49.99

Shelve in
Programming Languages/Java

User level:
Beginning

www.apress.com

RELATED

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Beginning Java 8 Fundamentals
Beginning Java 8 Fundamentals provides a comprehensive approach to learning the Java
programming language, especially the object-oriented fundamentals necessary at all levels
of Java development.

Author Kishori Sharan provides over 90 diagrams and 240 complete programs to help
beginners and intermediate level programmers learn the topics faster. Starting with basic
programming concepts, the author walks you through writing your first Java program
step-by-step. Armed with that practical experience, you’ll be ready to learn the core of the
Java language.

The book continues with a series of foundation topics, including using data types, working
with operators, and writing statements in Java. These basics lead onto the heart of the
Java language: object-oriented programming. By learning topics such as classes, objects,
interfaces, and inheritance you’ll have a good understanding of Java’s object-oriented model.

The final collection of topics takes what you’ve learned and turns you into a real Java
programmer. You’ll see how to take the power of object-oriented programming and write
programs that can handle errors and exceptions, process strings and dates, format data, and
work with arrays to manipulate data.

You’ll learn:

• How to write your first Java programs with an emphasis on learning
object-oriented programming in Java

• How to use data types, operators, statements, classes and objects
• How to work with exception handling, assertions, strings and dates, and

object formatting
• How to use regular expressions
• How to master arrays, interfaces, enums, and inheritance
• How to deploy Java applications on memory-constrained devices

using compact profiles

9 781430 266525

54999
ISBN 978-1-4302-6652-5

SOURCE CODE ONLINE

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

v

Contents at a Glance

Foreword �� xxv

About the Author �� xxvii

About the Technical Reviewer ��� xxix

Acknowledgments ��� xxxi

Introduction ��� xxxiii

Chapter 1: Programming Concepts ■ ���1

Chapter 2: Writing Java Programs ■ ��31

Chapter 3: Data Types ■ ��61

Chapter 4: Operators ■ ���99

Chapter 5: Statements ■ ���139

Chapter 6: Classes and Objects ■ ���165

Chapter 7: The Object and Objects Classes ■ ���281

Chapter 8: Wrapper Classes ■ ��317

Chapter 9: Exception Handling ■ ��335

Chapter 10: Assertions ■ ��379

Chapter 11: Strings ■ ��387

Chapter 12: Dates and Times ■ ���411

Chapter 13: Formatting Data ■ ���485

Chapter 14: Regular Expressions ■ ��519

Chapter 15: Arrays ■ ��543

■ Contents at a GlanCe

vi

Chapter 16: Inheritance ■ ���583

Chapter 17: Interfaces ■ ���643

Chapter 18: Enum Types ■ ��705

Appendix A: Character Encodings ■ ���727

Appendix B: Documentation Comments ■ ��739

Appendix C: Compact Profiles ■ ���759

Index ���775

xxxiii

Introduction

How This Book Came About
My first encounter with the Java programming language was during a one-week Java training session in 1997. I did
not get a chance to use Java in a project until 1999. I read two Java books and took a Java 2 Programmer certification
examination. I did very well on the test, scoring 95 percent. The three questions that I missed on the test made me
realize that the books that I had read did not adequately cover details of all the topics necessary about Java. I made up
my mind to write a book on the Java programming language. So, I formulated a plan to cover most of the topics that a
Java developer needs to use the Java programming language effectively in a project, as well as to get a certification.
I initially planned to cover all essential topics in Java in 700 to 800 pages.

As I progressed, I realized that a book covering most of the Java topics in detail could not be written in 700 to
800 hundred pages. One chapter alone that covered data types, operators, and statements spanned 90 pages. I was
then faced with the question, “Should I shorten the content of the book or include all the details that I think a Java
developer needs?” I opted for including all the details in the book, rather than shortening its content to keep the
number of pages low. It has never been my intent to make lots of money from this book. I was never in a hurry to
finish this book because that rush could have compromised the quality and the coverage of its contents. In short, I
wrote this book to help the Java community understand and use the Java programming language effectively, without
having to read many books on the same subject. I wrote this book with the plan that it would be a comprehensive one-
stop reference for everyone who wants to learn and grasp the intricacies of the Java programming language.

One of my high school teachers used to tell us that if one wanted to understand a building, one must first
understand the bricks, steel, and mortar that make up the building. The same logic applies to most of the things that
we want to understand in our lives. It certainly applies to an understanding of the Java programming language. If you
want to master the Java programming language, you must start by understanding its basic building blocks. I have used
this approach throughout this book, endeavoring to build each topic by describing the basics first. In the book, you
will rarely find a topic described without first learning its background. Wherever possible, I have tried to correlate
the programming practices with activities in our daily life. Most of the books about the Java programming language
available in the market either do not include any pictures at all or have only a few. I believe in the adage, “A picture is
worth a thousand words.” To a reader, a picture makes a topic easier to understand and remember. I have included
plenty of illustrations in the book to aid readers in understanding and visualizing the contents. Developers who have
little or no programming experience have difficulty in putting things together to make it a complete program. Keeping
them in mind, the book contains over 240 complete Java programs that are ready to be compiled and run.

I spent countless hours doing research for writing this book. My main source of research was the Java Language
Specification, white papers and articles on Java topics, and Java Specification Requests (JSRs). I also spent quite a bit
of time reading the Java source code to learn more about some of the Java topics. Sometimes, it took a few months
researching a topic before I could write the first sentence on the topic. Finally, it was always fun to play with Java
programs, sometimes for hours, to add them to the book.

■ IntroduCtIon

xxxiv

Structure of the Book
This book contains 18 chapters and three appendixes. The chapters contain fundamental topics of Java such as
syntax, data types, operators, classes, objects, etc. The chapters are arranged in an order that aids learning the
Java programming language faster. The first chapter, “Programming Concepts,” explains basic concepts related to
programming in general, without going into too much technical details; it introduces Java and its features. The second
chapter, “Writing Java Programs,” introduces the first program using Java; this chapter is especially written for those
learning Java for the first time. Subsequent chapters introduce Java topics in an increasing order of complexity. The
new features of Java 8 are included wherever they fit in the chapter. The new Date-Time API, which is one of the
biggest addition in Java 8, has been discussed in great detail in over 80 pages in Chapter 12.

After finishing this book, to take your Java knowledge to the next level, two companion books are available by the
author: Beginning Java 8 Language Features (ISBN 978-1-4302-6658-7) and Beginning Java 8 APIs, Extensions, and
Libraries (ISBN 978-1-4302-6661-7).

Audience
This book is designed to be useful for anyone who wants to learn the Java programming language. If you are a beginner,
with little or no programming background, you need to read from the first chapter to the last, in order. The book
contains topics of various degrees of complexity. As a beginner, if you find yourself overwhelmed while reading a section
in a chapter, you can skip to the next section or the next chapter, and revisit it later when you gain more experience.

If you are a Java developer with an intermediate or advanced level of experience, you can jump to a chapter or to
a section in a chapter directly. If a section uses an unfamiliar topic, you need to visit that topic before continuing the
current one.

If you are reading this book to get a certification in the Java programming language, you need to read almost all
of the chapters, paying attention to all the detailed descriptions and rules. Most of the certification programs test your
fundamental knowledge of the language, not the advanced knowledge. You need to read only those topics that are part of
your certification test. Compiling and running over 240 complete Java programs will help you prepare for your certification.

If you are a student who is attending a class in the Java programming language, you need to read the first six
chapters of this book thoroughly. These chapters cover the basics of the Java programming languages in detail. You
cannot do well in a Java class unless you first master the basics. After covering the basics, you need to read only those
chapters that are covered in your class syllabus. I am sure, you, as a Java student, do not need to read the entire book
page-by-page.

How to Use This Book
This book is the beginning, not the end, for you to gain the knowledge of the Java programming language. If you are
reading this book, it means you are heading in the right direction to learn the Java programming language that will
enable you to excel in your academic and professional career. However, there is always a higher goal for you to achieve
and you must constantly work harder to achieve it. The following quotations from some great thinkers may help you
understand the importance of working hard and constantly looking for knowledge with both your eyes and mind open.

The learning and knowledge that we have, is, at the most, but little compared with that of which
we are ignorant.

—Plato

True knowledge exists in knowing that you know nothing. And in knowing that you know nothing,
that makes you the smartest of all.

—Socrates

■ IntroduCtIon

xxxv

Readers are advised to use the API documentation for the Java programming language, as much as possible,
while using this book. The Java API documentation is the place where you will find a complete list of documentation
for everything available in the Java class library. You can download (or view) the Java API documentation from the
official web site of Oracle Corporation at www.oracle.com. While you read this book, you need to practice writing Java
programs yourself. You can also practice by tweaking the programs provided in the book. It does not help much in
your learning process if you just read this book and do not practice by writing your own programs. Remember that
“practice makes perfect,” which is also true in learning how to program in Java.

Source Code and Errata
Source code and errata for this book may be downloaded from www.apress.com/source-code.

Questions and Comments
Please direct all your questions and comments for the author to ksharan@jdojo.com.

www.oracle.com
www.apress.com/source-code
http://ksharan@jdojo.com

1

Chapter 1

Programming Concepts

In this chapter, you will learn

The general concept of programming•	

Different components of programming•	

Major programming paradigms•	

The object-oriented paradigm and how it is used in Java•	

What Is Programming?
The term “programming” is used in many contexts. We will discuss its meaning in the context of human-to-computer
interaction. In the simplest terms, programming is the way of writing a sequence of instructions to tell a computer
to perform a specific task. The sequence of instructions for a computer is known as a program. A set of well-defined
notations is used to write a program. The set of notations used to write a program is called a programming language. The
person who writes a program is called a programmer. A programmer uses a programming language to write a program.

How does a person tell a computer to perform a task? Can a person tell a computer to perform any task or does a
computer have a predefined set of tasks that it can perform? Before we look at human-to-computer communication,
let’s look at human-to-human communication. How does a human communicate with another human? You
would say that human-to-human communication is accomplished using a spoken language, for example, English,
German, Hindi, etc. However, spoken language is not the only means of communication between humans. We
also communicate using written languages or using gestures without uttering any words. Some people can even
communicate sitting miles away from each other without using any words or gestures; they can communicate at
thought level.

To have a successful communication, it is not enough just to use a medium of communication like a spoken or
written language. The main requirement for a successful communication between two parties is the ability of both
parties to understand what is communicated from the other party. For example, suppose there are two people. One
person knows how to speak English and the other one knows how to speak German. Can they communicate with
each other? The answer is no, because they cannot understand each other’s language. What happens if we add an
English-German translator between them? We would agree that they would be able to communicate with the help of a
translator even though they do not understand each other directly.

Computers understand instructions only in binary format, which is a sequence of 0s and 1s. The sequence of
0s and 1s, which all computers understand, is called machine language or machine code. A computer has a fixed
set of basic instructions that it understands. Each computer has its own set of instructions. For example, 0010 may
be an instruction to add two numbers on one computer and 0101 is an instruction to add two numbers on another
computer. Therefore, programs written in machine language are machine-dependent. Sometimes machine code is
referred to as native code as it is native to the machine for which it is written. Programs written in machine language
are very difficult, if not impossible, to write, read, understand, and modify. Suppose you want to write a program that

Chapter 1 ■ programming ConCepts

2

adds two numbers, 15 and 12. The program to add two numbers in machine language will look similar to the one
shown below. You do not need to understand the sample code written in this section. It is only for the purpose of
discussion and illustration.

0010010010 10010100000100110
0001000100 01010010001001010

The above instructions are to add two numbers. How difficult will it be to write a program in machine language
to perform a complex task? Based on the above code, you may now realize that it is very difficult to write, read, and
understand a program written in a machine language. But aren’t computers supposed to make our jobs easier, not
more difficult? We needed to represent the instructions for computers in some notations that were easier to write,
read, and understand, so computer scientists came up with another language called an assembly language. An
assembly language provides different notations to write instructions. It is little easier to write, read, and understand
than its predecessor, machine language. An assembly language uses mnemonics to represent instructions as opposed
to the binary (0s and 1s) used in machine language. A program written in an assembly language to add two numbers
looks similar to the following:

li $t1, 15
add $t0, $t1, 12

If you compare the two programs written in the two different languages to perform the same task, you can
see that assembly language is easier to write, read, and understand than machine code. There is one-to-one
correspondence between an instruction in machine language and assembly language for a given computer
architecture. Recall that a computer understands instructions only in machine language. The instructions that are
written in an assembly language must be translated into machine language before the computer can execute them.
A program that translates the instructions written in an assembly language into machine language is called an
assembler. Figure 1-1 shows the relationship between assembly code, an assembler, and machine code.

Figure 1-1. The relationship between assembly code, assembler, and machine code

Machine language and assembly language are also known as low-level languages. They are called low-level
languages because a programmer must understand the low-level details of the computer to write a program using
those languages. For example, if you were writing programs in machine and assembly languages, you would need
to know what memory location you are writing to or reading from, which register to use to store a specific value, etc.
Soon programmers realized a need for a higher-level programming language that could hide the low-level details
of computers from them. The need gave rise to the development of high-level programming languages like COBOL,
Pascal, FORTRAN, C, C++, Java, C#, etc. The high-level programming languages use English-like words, mathematical
notation, and punctuation to write programs. A program written in a high-level programming language is also called
source code. They are closer to the written languages that humans are familiar with. The instructions to add two
numbers can be written in a high-level programming language, for example. Java looks similar to the following:

int x = 15 + 27;

Chapter 1 ■ programming ConCepts

3

You may notice that the programs written in a high-level language are easier and more intuitive to write, read,
understand, and modify than the programs written in machine and assembly languages. You might have realized
that computers do not understand programs written in high-level languages, as they understand only sequences of
0s and 1s. So there’s a need for a way to translate a program written in a high-level language to machine language.
The translation is accomplished by a compiler, an interpreter, or a combination of both. A compiler is a program that
translates programs written in a high-level programming language into machine language. Compiling a program is an
overloaded phrase. Typically, it means translating a program written in a high-level language into machine language.
Sometimes it is used to mean translating a program written in a high-level programming language into a lower-level
programming language, which is not necessarily the machine language. The code that is generated by a compiler is
called compiled code. The compiled program is executed by the computer.

Another way to execute a program written in high-level programming language is to use an interpreter. An
interpreter does not translate the whole program into machine language at once. Rather, it reads one instruction
written in a high-level programming language at a time, translates it into machine language, and executes it. You
can view an interpreter as a simulator. Sometimes a combination of a compiler and an interpreter may be used to
compile and run a program written in a high-level language. For example, a program written in Java is compiled into
an intermediate language called bytecode. An interpreter, specifically called a Java Virtual Machine (JVM) for the
Java platform, is used to interpret the bytecode and execute it. An interpreted program runs slower than a compiled
program. Most of the JVMs today use just-in-time compilers (JIT), which compile the entire Java program into
machine language as needed. Sometimes another kind of compiler, which is called an ahead-of-time (AOT) compiler,
is used to compile a program in an intermediate language (e.g. Java bytecode) to machine language. Figure 1-2 shows
the relationship between the source code, a compiler, and the machine code.

Figure 1-2. The relationship between source code, a compiler, and machine code

Components of a Programming Language
A programming language is a system of notations that are used to write instructions for computers. It can be described
using three components:

Syntax•	

Semantics •	

Pragmatics•	

The syntax part deals with forming valid programming constructs using available notations. The semantics part
deals with the meaning of the programming constructs. The pragmatics part deals with the use of the programming
language in practice.

Like a written language (e.g. English), a programming language has a vocabulary and grammar. The vocabulary
of a programming language consists of a set of words, symbols, and punctuation marks. The grammar of a
programming language defines rules on how to use the vocabulary of the language to form valid programming
constructs. You can think of a valid programming construct in a programming language like a sentence in a written
language. A sentence in a written language is formed using the vocabulary and grammar of the language. Similarly,
a programming construct is formed using the vocabulary and the grammar of the programming language. The
vocabulary and the rules to use that vocabulary to form valid programming constructs are known as the syntax of the
programming language.

