THE EXPERT’S VOICE® IN JAVA

s s /YIS LIS ALY
Sssseusesiteg

Java Quick
Syntax Reference

Mikael Olsson

/1SS S SIS ITTTE -
ApPresse

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks
and Contents at a Glance links to access them.

Apress®

Contents at a Glance

About the Authorcccnvsmmmismmsn s ————— Xi
INtroduction ... —————— Xiii
Chapter 1: Hello World..........cccuunmmmmmmmmmnmmmmmmmmmsssssssssssssssssssssssssnns 1
Chapter 2: Compile and RuN..........cccinninemmmmmsssssmmmmsssssnmsssssssnnssssnns 3
Chapter 3: Variablescccuemmmimsssennmmnssssssnmsssssssssssssssssssssssssssssssnns 5
Chapter 4: 0peratorscccueemmmmsssssnmmmsssssnmmsssssssssssssssssssssssssnsssssnns 9
Chapter 5: Stringcccceeeeemmmmmmmmmsssssssssnnnmes s ssssssnsens 13
Chapter 6: Arraysccccrrssssessmmssssssssmssssssssssssssssssssssnssssssssnnnssssnans 15
Chapter 7: Conditionalsccccussemmmmsssssnnmmssssssnmssssssssssssssnsnsssssans 19
Chapter 8: LOOPS.....cuuuemmmmsssssnnmmssssnsnssssssnnnssssssnsnssssssnnnsssssnnnnssssnnns 21
Chapter 9: Methodsccusemmmmnssnnnnmsssssnnsmssssssnssssssssssessssnsssssssnns 25
Chapter 10: Classccccurrmsssmnnmmsssssssmsssssssnssssssssssssssssssssssssnsssssssnns 29
Chapter 11: StatiC.......cccccmmrrrrmmssssssssssnnnrrssssssss s 35
Chapter 12: Inheritance.........cccunmmememmmmmmmmmmssssss——————— 39
Chapter 13: Overridingccccuumssessssmmmmmmmsssssssssssssssssssssssssssssssnns 41
Chapter 14: Packages and Import..........c.ccccnsmmmmssmmmnsssnssssssssssans 45
Chapter 15: AcCesS LeVelS......uummmmmmmmmmmmmmmmmsssssssssssssssssssssnsssssnsnas 47
Chapter 16: Constants.........ccccvunmmmmmmmsssnnnmmsssssnmsssssssssssssssssssssnnns 51
Chapter 17: Interface......c..ccvssumrmsssmsmsssnsssssnssssssssssssssssssssssssnssssanes 53

iii

CONTENTS AT A GLANCE

Chapter 18: Abstractccciinnemmmmmnnsemnmmnsssnmmnsssnmsass——— 57
Chapter 19: ENUM.......ceeemmiiiriinissssssssssnsnsesssssssssssssssssssssssssssssnnssnss 59
Chapter 20: Exception Handlingcuccmmmmnsssnnnmmssssssnssssssssssssssnns 61
Chapter 21: Boxing and UnNboOXingcccsemssssmnnsssssssnnsssssnsnsssssnnns 65
Chapter 22: GENEIiCSuurussmrrssansrssanssssansesssnsesssnsesssnnesssnnssssnnssssnns 67
INdeX..iiimiirni i —————— 73

iv

Introduction

Java is a high-level object-oriented programming language developed by Sun
Microsystems, which became part of Oracle Corporation in 2010. The language is

very similar to C++, but has been simplified to make it easier to write bug free code.

Most notably, there are no pointers in Java, instead all memory allocation and deallocation
is handled automatically.

Despite simplifications like this Java has considerably more functionality than both
C and C++, due to its large class library. Java programs also have high performance and
can be made very secure, which has contributed to making Java the most popular general
purpose programming language in use today.

Another key feature of Java is that it is platform independent. This is achieved by only
compiling programs half-way, into platform independent instructions called bytecode.
The bytecode is then interpreted, or run, by the Java Virtual Machine (JVM). This means
that any system that has this program and its accompanying libraries installed can run
Java applications.

There are three class libraries available for the Java programming language:

Java ME, Java SE and Java EE. Java ME (Mobile Edition) is a stripped down version of
Java SE (Standard Edition), while Java EE (Enterprise Edition) is an extended version
of Java SE that includes libraries for building web applications.

The Java language and class libraries have undergone major changes since their
initial release in 1996. The naming conventions for the versions have gone through a few
revisions as well. The major releases include: JDK 1.0, JDK 1.1, J2SE 1.2, J2SE 1.3, J2SE 1.4,
J2SE 5.0, Java SE 6 and Java SE 7, which is the current version as of writing.

After J2SE 1.4 the version number was changed from 1.5 to 5.0 for marketing
reasons. As of J2SE 5.0, there is one version number for the product and another one used
internally by the developers. J2SE 5.0 is the product name, while Java 1.5 is the developer
version. Similarly, Java SE 7 is the product and Java 1.7 the internal version number. For
simplicity’s sake, the Java versions will be referred to as Java 1-7 in this book. Note that
Java is designed to be backwards compatible. Thus the Virtual Machine for Java 7 can still
run Java 1 class files.

xiii

CHAPTER 1

Hello World

Installing

Before you can program in Java you need to download and install the Java Development
Kit (JDK) Standard Edition (SE) from Oracle’s website.! Among other things, the JDK
includes the Java compiler, the class libraries and the virtual machine needed to run
Java applications. Oracle’s download page also has a link to obtain Netbeans? bundled
with the JDK. Netbeans is an Integrated Development Environment (IDE) that will make
development in Java much easier. Alternatively, another free IDE you can use is Eclipse,®
or if you do not want to use any IDE at all a regular text editor will work just fine.

Creating a project

If you decide to use an IDE (recommended) you need to create a project, which will
manage the Java source files and other resources. Alternatively, if you prefer not to use an
IDE you can create an empty file with the .java extension, for example MyApp.java, and
open it in your text editor of choice.

To create a project in Netbeans, go to the File menu and select New Project. From the
dialog box select the Java Application project type under the Java category and click next.
On this dialog box set the project name to “MyProject” and the name of the main class to
“myproject.MyApp”. Change the project’s location if you want to, and then hit the Finish
button to generate the project. The project’s only file, MyApp.java, will then open up,
containing some default code. You can go ahead and remove all of that code so that you
start with an empty source file.

Hello world

When you have your project and programming environment set up the first application
you will create is the Hello World program. This program will teach you how to compile
and run Java applications, as well as how to output a string to a command window.

'http://www.oracle.com/technetwork/java/javase/downloads/index.html
*http://www.netbeans.org
*http://www.eclipse.org

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.netbeans.org/
http://www.eclipse.org/

CHAPTER 1 © HELLO WORLD

The first step in creating this program is to add a public class to your MyApp.java
source file. The class must have the same name as the physical source file without the file
extension, in this case “MyApp”. It is legal to have more than one class per file in Java, but
only one public class is allowed, and that name must match the filename. Keep in mind that
Java is case sensitive. The curly brackets following the class name delimits what belongs to
the class and must be included. The brackets, along with their content, is referred to as a code
block, or just a block.

public class MyApp {}

Next, add the main method inside the class. This is the starting point of the application
and must always be included in the same form as is shown below. The keywords themselves
will be looked at in later chapters.

public class MyApp {
public static void main(String[] args) {}

}

The last step in completing the Hello World program is to output the text by calling
the print method. This method is located inside the built-in System class, and then
another level down inside the out class. The method takes a single argument - the string
to be printed - and it ends with a semicolon, as do all statements in Java.

public class MyApp {
public static void main(String[] args) {
System.out.print("Hello World");
}

}

Note that the dot operator (.) is used to access members of a class.

Code hints

If you are unsure of what a specific class contains, or what arguments a method takes,
you can take advantage of code hints in some IDEs, such as Netbeans. The code hint
window appears anytime you are typing code and there are multiple predetermined
alternatives. It can also be brought up manually by pressing Ctrl + Space. This is a very
powerful feature that gives you quick access to the whole class library and their members,
along with descriptions.

CHAPTER 2

Compile and Run

Running from the IDE

With your Hello World program complete you can compile and run it in one of two ways.
The first method is by selecting run from the menu bar of the IDE that you are using.

In Netbeans the menu command is: Run » Run Main Project. The IDE will then compile
and run the application, which displays the text “Hello World”.

Running from a console window

The other way is to manually compile the program by using a console window
(C:\Windows\System32\cmd.exe). The most convenient way to do this is to first add the
JDK bin directory to the PATH environment variable. In Windows, this can be done by
using the SET PATH command, and then by appending the path to your JDK installation’s
bin folder separated by a semicolon.

SET PATH=%PATH%;"C:\Program Files\JDK\bin"

By doing this the console will be able to find the Java compiler from any folder for the
duration of this console session. The PATH variable can also be permanently changed.'
Next, navigate to the folder where the source file is located and run the compiler by typing
“javac” followed by the complete filename.
javac MyApp.java

The program will be compiled into a class file called MyApp.class. This class file
contains bytecode instead of machine code, so to execute it you need to call the Java
Virtual Machine by typing “java” followed by the filename.
java MyApp

Notice that the .java extension is used when compiling a file, but the .class extension
is not used when running it.

'http://www.java.com/en/download/help/path.xml

http://www.java.com/en/download/help/path.xml

CHAPTER 2 © COMPILE AND RUN

Comments

Comments are used to insert notes into the source code and will have no effect on the
end program. Java has the standard C++ comment notation, with both single-line and
multi-line comments.

// single-line comment

/* multi-line
comment */

In addition to these, there is the Javadoc comment. This comment is used to generate
documentation by using a utility included in the JDK bin folder which is also called
Javadoc.

/** javadoc
comment */

CHAPTER 3

Variables

Variables are used for storing data during program execution.

Data types

Depending on what data you need to store there are several kinds of data types. Java has
eight types that are built into the language. These are called primitives. The integer (whole
number) types are byte, short, int and long. The float and double types represent
floating-point numbers (real numbers). The char type holds a Unicode character and the
boolean type contains either a true or false value. Except for these primitive types, every
other type in Java is represented by either a class, an interface or an array.

Data Type Size (bits) Description

byte 8 Signed integer

short 16

int 32

long 64

float 32 Floating-point number
double 64

char 16 Unicode character
boolean 1 Boolean value

Declaring variables

To declare (create) a variable you start with the data type you want it to hold followed by
avariable name. The name can be anything you want, but it is a good idea to give your
variables names that are closely related to the values they will hold. The standard naming

