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THE CHOSEN PARAMETERS OF A PASSIVE DAMPING SYSTEM BASED ON 
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S U M M A R Y 
The vehicle systems usually employ the passive damping device to dispose of an oscillation. In 
passive damper, it is important to choose the design parameters (the stiffness of spring and 
eoefficienl of damper) so that the oscillation target of vehicle is the best in the operating conditions 
(typical load mode, the working speed range, typical street). In this paper, the author proposes a 
solution to choose the design parameters based on a stochastic optimization algorithm which is 
assumed that this device is an active damper (the damping device is controlled by an electronic 
control system). According to design parameters of the passive damper are found by a covariance 
matrix and an equation order reduction. The results of proposed method are positive approach 
which is proven by the simulation results. Thereby, it will open a possibility for practical 
applications. 
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INTRODUCTION 

With the development of electronics and 
microprocessors, commercial auto - mobiles 
with active dampers become available in the 
1990s. Although active damper can improve 
the ride comfort and road handing beyond 
that attainable by passive damper, the cost, 
weight, and power requirments of active 
dampers remain prohibitive. Because, passive 
dampers are simple, reliable, and inexpensive, 
they remain dominant in automotive 
marketplace. 

When the vehicles move on the street, there 
are many factors which affect the vehicle for 
example: actual velocity, aerodynamic drag, 
road conditions,... they usually change with 
the times and effect to the oscillation 
standards of the vehicle. The oscillation 
vehicle will a constant or a little changing 
when it is affected by above factors, the 
stiffness of spring and coefficient of damper 
must have suitable values. 
There have appeared relatively few studies on 
optimization of the passive dampers. Li and 
Pin [1] employed evolutionary algorithms to 
optimize a passive quarter-car suspension. 
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Optimization of a quarter-car suspension is 
formulated as an H2 optimal control problem 
by Corriga et al [2] and a simplex direct 
search is employed to find the optimum 
values of two parameters. Camino et at [3] 
applied a linear - matrix - inequality (LMI) 
base min/max algorithm for static output 
feedback to design of passive the optimal 
quarter-car suspension. 
By minimizing the variance of control force 
difference between the passive suspension 
and the LQG active suspension with full-state 
feedback. Lin and Zhang [4] obtain the 
suboptimal parameters of LQG passive 
suspensions based on half car-model. 
Elamadany [5] developed a procedure based 
on covariance analysis and direct search 
method to optimize the passive suspension of 
the three-axle half vehicle model. Castillo et 
al [6] use sequential linear programming to 
minimize the weighted acceleration of 
passenger subject to constraint on the 
suspension stroke. 

In this paper, we use a stochastic optimization 
algorithm to find design parameters of the 
passive damper applied covariance matrix in 
[5] and equation order reduction in [7] 
We consider the passive damping system 
which is described in Figure I. 
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Figure 1. The passive damping system 

Table \. The parameters of the passive damping 
system [3] 

Parameters Meaning 

m, = 500 [kg) Th^ vje,\%hX of truck 

m^ = 63(^5) '^^^ weight of tyre 

jj. The stiffiiess of spring 

c The coefficient of damper 

k^ = 230(iW / m) The stiffness of tyre 

c = 120(Ns } m] The damping coefficient 
^ ' the tyre 

First, model of the system based on 

D'Alambe priciple 

i|i! + A;, (2 - 2J -f Cj fi - i, I ^ 0 

•™2̂ i + [ ^ i ( ^ ~ ^ ) + '^i(^~-^i ) ] - • • • (1-1) 

•-K(^,-^a) + s(^.-^o)l-f> 
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(1.2) 

The mathematical expression in statement 

space form as given in Formula (1.3). 
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The equation expression for the stochastic 
surface road is given in Formula (1.4): 

w =—aim-\-^(t) 

E{^{t),^(t)}:^2a'av6{t-T)=Q6(t-T) (lA) 

w = A^w-\-D^^^it);A^ =-av,D^=l 

Table 2. The parameters of the slochaslie surface 
road [7] 

Parameters Meaning 

a —0 15(m" ' ) The specific coefficient 
^ ' of surface road 

i; = l0-^40(m/s] The speed of vehicle ' 

w spectral density fiinction j 

' ff'^gfmm') The specific coefficient 
^ ' of stochastic 

5 dirac 

Second, w e combine the Formula (1.3) with 
(1.4) to describe the general mathematical 
model which ment ions the stochastic factors 
of the surface road: 

B 
0 A 

^, =^ ,+Bu-M>| f ; 

0 i\ 
D m 

(1.5) 

Problems: w e find parameters of the passive 

damping system c, and fc, with assume that we 

• know the parameter values as Tn̂ ; m.; A:; c . 

The proposed solution : It is assumed that this 

system is an active damper which it is 

controlled by L Q R optimization in [5]. 

- The model of the system 
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is = ^^s +5u-|-Z3|( i) 

- The controller 

u = —Rx 

withfl = f-' [N^ + B'^.s) is defined by solving 

Riccati equation; 

S(A - BF-'N'') + [A- BF^'N^f S -

-SBF-'B^S -{-[E- NF-'N'') = 0 

- The objective function : 

J = j[yEx + uFu] + 2uN''x W ̂  min (1.6) 

The following steps are necessary to choose 
the parameters c, and fc,: the first, we build 
the objective fimctions which correlate with 
criteria evaluation of the oscillation, and setup 
the general objective function which form the 
Formula (1.6), the second, it used reduced 
method to solve Riccati and Lyapunov 
function defining 5" matrix and Â  matrix, the 
last, we find two matrix A and R to 
substitute the objective function which 
defines coefficients c, and k^. 
PERFORMENCE 
The objective function 
We define optimal parameters which concern 
with criteria evaluation of the oscillation: the 
smooth motion, the fast ability stick to surface 
road and working space of the suspend 
system. Therefore, the target funtion is given 
in the Formula (2.1): 

J = P^J, + Pi^i + P3J3 + Pn^i ~* ° ^ " (2-1) 
where; 
Ji : The target funtion evaluates the smooth 

motion 
J : The target funtion evaluates the relative 

shift between the vehicle body and wheels. 
J : The target funtion evaluates the relative 

shift between the wheels and surface road. 

J . The energy costs of the controlled 

function 
p ( j = L2,3,4) : The equivalent weights of 

the target functions. 
The objective function Ji. The smooth 
motion evaluates based on the average 

squared acceleration of the passenger 
compartment. 

j^ =£;{j / ; ' | -£{i^ |^minwith£is a 

mathematical expectation 

i : | . ( 2 , . ) - i - f l ( . ) ^ , 

t\A(2,i)-l-R(, 

(2.2) 

=|:£|4^')-;^«{')|^(^^)~4)f(") 
The objective function J2. This evaluates are 
the average squared acceleration of the 
relative shifl: between the vehicle body and 
wheels. 

= E\X^X^ -2x^X3 +x^x.^ (2.3) 

The objective function J3. This evaluates are 
the average squared acceleration of the 
relative shift between the wheels and surface 

= s f l , ! , -21 .1 , +x^x,] (2.4) 

J, =X[3,3)-2X[3,5)-\-X[5,5) 

The objective functioi 
of the controlled flinctic 

J,=E[I.'} = E\(R{,)X 

The objective function J4. The energy costs 
of the controlled function 

-ZZ'i{')R{')xH 
(2.5) 

The following, the general objective function 
J is in the form Formula (1.6) 

•' = P / l +P2'^2 ^Pj'^l ^P.K 

= (>,E{^} +f!,E[(j, - j j ' j +ft£{(!4 -»,) '} +P,EJ«?} 

" f i W +p,(j , - j , f +p,(z, -2 , ) ' +p,«"| 
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ŝ  s [ ™. ™ 

s_ s_ 
•€ •s. 

-1-

Af , r l l 
' r'lN 0 = 0 

0 I 

matrixs, 

(2.7) 

_ 
(2.g) 

''13+''! (".^ - * ' ) , - ' ' • - ' ' ,-, 

fl~ 
I 

\ \ J 
, .T ^1 C, fc fc 1 

[ m, m^ TTij T71 

Solving stochastic optimization problem 

The solving stochastic optimization problem 
susbtance is that Riccati and Lyapunov 
equations are solved to define 
5 and ̂  matrixs. 
The Riccati equation is defined that: 
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The result, four equations are obtained ; 

•5.(4, -BF-V] + ( 4 -BJ-'ft]S_ -

S^B^F-^ffS^ + £ . -N^rV = 0 

(2.10) is the Riccati equation 
5_D+£_ + 

4^ \A +iA -BF'N'f-S Br'B'\ = Q 

(2.11) is the normal algebraic equation 

+^[A^ - B^F~'Nl) - B^F-'B^S^ 

(2.12) is the nonnal algebraic equation 

S_A_+AlSl + 

(2.13) is the Lyapunov equation 

where S^;S^;S^; and S_^are roots of 
(2.10), (2.11), (2.12), (2.13) 
Next, Lyapunov equation is solved to define 
covariance matrix of state vector as given: 

(2.10) 

(2.11) 

, (2.12) 

(2.13) 
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[A-BR)X-i-X(A-BRf -i-DQD'' ^0 (2.14) 
To define X matrix, the equation order 
reduction is reduced and X, R,A, Band 

D matrixs are seperated: 

(2.15) 

Substitute (2.15) to Lyapunov equation 
(2.14). The result, the equations are obtained : 

^[A^ -BR}^X^^ +^^(A - ^ f 

+{D^-BR^^^-^X^[D^-BR^^' =0 

(2.16) is the Lapunov equafion 

(4 -5H)Z„+{ZJ -5 i ? JX ,^+X^^=0 (2.17) 

is the normal algebraic equation 
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(2.17) 

A^X_^ + X^Al + D^QDl = 0 (2.18) 

(2.18) is the Lapunov equation 

where ̂  \X ^and X^^^ ; X^ are roots of 

(2.16), (2.17), (2.18). 
With B matrix define in the Formula (2.19): 

•,R =F'lN^+jgs];R =r'B^S^ 

The results are obtained by the algorithm 
which presents in Figure 4 

I Figure 2. The relationship between c, andj, p jv 

••Hr 

^ 
\ 
v 

i ^ ~ ^ 

Figure 3. The relationship between k, andJ/m 
Ifk^ is increased, then the objective function Ji 
is decreased that the average squared 
acceleration of the passenger compartment is 
minimum (see Fig 2). However, If A;, is 
increased (see Fig 2), then the objective 
function h is increased following that the 
working space of the suspend system is 
extended so that the stiffness of spring makes 
decreasing smooth motion (see Fig6). 
The coefficient of damper c, effect to the 
oscillation standards of the vehicle. Ifc, is 
increased (see Fig 2, and Fig 5), then a good 
ride comfort and road handling is extended, 
and the working space is smaller. Therefore, 
the design of the passive damping system is 
chosen: 

fc, = 2.2871e' [kN } m) 

and Cj =1.2871e^(Afs/m). 

CONCLUSION 
The calculation results show that the 
oscillation criteria of the passive damper 
systems are optimized corresponding to the 
design parameters (contain ci and ki) based 
on optimal control algorithm LQR. This 
proves the assumption that the damping passive 
is active damper system is correct. Then, the 
equation order reduction is reduced to solve 
Riccati equation and Lyapunov equation. 
The paper presents details of the process 
which is established the objective function by 
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the actual requirements and is given as similar 
the Formula (1.6) instead of a constant matrix 
of the objective function as usual. 

Begin i 

y 
Add: 
The system parameters w;, m ,̂̂ ?, ĉ  
The surface road parameters a, a, v 
The target fiinction parameters pt, 
P2. Pi. PiJb Jl. Jh J4, J 

Add matrixs: 
A, B^ C„ D^ Q, Z),̂  E. 
F. N A=[A^ D,; Zeros(0) AJ. 
B^Bx: OJ. D=[0; DJ 

Calculate: 
S matrix from the (2.10), (2.11), 
(2.12), (2.13) equations. X matrix 
from the (2.16), (2.17), (2.18) 
equations. R matrix from the (2.19) 

^g 
Calculate: 
The target function J,, Jj, J}, J4, J 

J 
Figure 4. The algorithm to find desing parameters 
With the optimal parameters c/ and ki, the 
criteria of the smooth motion, the ability stick 
fast to surface road and working space of the 
suspend system are better (see Fig 2, Fig 3, 
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Fig 4 and Fig 5). This allows that the 
preliminary designing damper system is 
ensured reliability. 

X IO-* Tho ra oUonship JJ:1 

-i-\i i-— 
-4--i \-:A^-

• j ; ; i i i • 

Figure 5. The relationship between Ci and J 

Figure 6 The relationship between kj and J 

REFERENCE 
1. Li, T.-H. and Pin, K..-Y .-.Evolutionary 
Algorithms for Passive Suspension Systems. JSME 
Int. J. Ser. C,43 (3) (2000), pp. 537-544 
2. Corriga, G., Giua, A. and Usai, G.; An H2 
Formulation for the Design of a Passive 
Vibration-IsolalionSystem for Cars. Vehicle Syst. 
Dyn.26(1996), pp. 381-393 
3. Camino, J.F., Zampieri, D.E. and Peres, P.L; 
Design of a Vehicular Suspension Controller fcv 
Stalie Output Feedback. Proc. of the American 
Control Conference, 1999, pp. 3168-3172. 
4. Lin,Y.andZhang,Y.:5w5pe«j/o« Optimization ty 
Frequency Domain Equivalent Optimal Control 
Algorithm. J. Sound Vib. 133 (2) (1989), pp. 239-249 
5. Elmadany, M.M.: A Procedure fijr Optimization 
of Truck Suspensions. Vehicle Si>sl. Dyn. 16 
(1987),pp. 297-312 
6. Lei Zuo, and Smair: H2 optimal control of 
disturbance - delayed systems with application to 
vehicle suspensions. 
7. Elbeheiry, E.M. and Karaopp, D.C.: Optimal 
Control of Vehicle Radom Vibration with 
Confrtrained Suspesnion Deflection. J. Sound Vib. 
189 (5) (1996), pp. 547-564. 



Nguyin Thi Thanh QuJ-nh vd Dig Tap chi KHOA HOC & CONG NGHE 126(12): 99 -105 

TOM TAT 
XAC DINH THAM S 6 CHO HE THONG GIAM CHAN THU DONG BANG 
PHlTONG PHAP TOI UtJ NGAU NHIEN 

Nguyen Thj Thanh Quynh , Phgm VSn Thiem 
Trifdng Dai hpc Ky thugt Cong nghidp - DH Thai Nguyen 

Trong cic he thong dao dong dSc biet la h6 th6ng giam chan thu dong, viec quan trong la lua chon 
cac tham so thiet ke (do ciing nhip vd he sd cdn aia gidm chdn) sao cho cac chi tieu dao dgng cua 
xe dat gid tri tot nhat trong dieu kien van hanh (che dd ldi ddc trung, ddl Idc do ldm viec, logi 
dudng van hdnh phd biin). Trong hk\ bao nay tac gia sS de xuat mot giai phdp lira chon cac tham 
s6 thi^t k^ dua tren thuat todn tSi uu nglu nhien bing cdch gia thiet rang he thong giam chkn \h 
tich cue (he thdng gidm chdn duac dieu khien bai mot he dieu khien dien tir). Theo d6, c4c tham s6 
thigt k6 cua hS thflng giam chdn thu dflng sg dugc xac djnh dya tren ma tran covariance va phirong 
ph^p gidm bac phuong trinh. Ket qua cCia phucmg phap rSt kha quan the hien qua cac k^t qua mfl 
phong, qua do mo ra kha ndng img dung vao thuc te. 
Tir khoa: He thdng gidm chdn, loi uu ngdu nhien, LQG, ma trdn convariance 
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