

Nonlinear Constrained Optimization of the Coupled Lateral and Torsional Micro-Drill System with Gyroscopic Effect

Student : Hoang Tien Dat

Advisor : Prof. An-Chen Lee

July 14th, 2015

Nonlinear Constrained Optimization of the Coupled Lateral and Torsional Micro-Drill System with Gyroscopic Effect

研究生: 黃進達 Student: Hoang Tien Dat

指導教授:李安謙

Advisor : An-Chen Lee

國立交通大學

機械工程學系

Submitted to Department of Mechanical Engineering

College of Engineering

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master of Science

in

Mechanical Engineering

July 14th, 2015 Hsinchu, Taiwan, Republic of China

Nonlinear Constrained Optimization of the Coupled Lateral and Torsional Micro-Drill System with Gyroscopic Effect

Student : Hoang Tien Dat Advisor : An-Chen Lee

Department of Mechanical Engineering National Chiao Tung University

Abstract

Micro drilling tool plays an extremely important role in many processes such as the printed circuit board (PCB) manufacturing process, machining of plastics and ceramics. The improvement of cutting performance in tool life, productivity and hole quality is always required in micro drilling.

In this research, a dynamic model of micro-drill tool is optimized by the interior-point method. To achieve the main purpose, the finite element method (FEM) is utilized to analyze the coupled lateral and torsional micro-drilling spindle system with the gyroscopic effect. The Timoshenko beam finite element with five degrees of freedom at each node is applied to perform dynamic analysis and to improve the accuracy of the system containing cylinder, conical and flute elements. Moreover, the model also includes the effects of continuous eccentricity, the thrust, torque and rotational inertia during machining. The Hamilton's equations of the system involving both symmetric and asymmetric elements were progressed. The lateral and torsional responses of drill point were figured out by Newmark's method.

The aim of the optimum design is to find some optimum parameters, such as the diameters and lengths of drill segments to minimize the lateral amplitude response of the drill point. Nonlinear constraints are the constant mass and mass center and harmonic response of the drill. The FEM code and optimization environment are implemented in MATLAB to solve the optimum problem.

Keywords: Finite element analysis, Nonlinear constrained optimization, Micro-drill spindle, Gyroscopic effect

List of Figures

Figure 1. Three kind of vibrations [31]	7
Figure 2 Illustration of Gyroscopic effect [40]	7
Figure 3 Whirl orbit	
Figure 4 Mode shapes [41]	9
Figure 5. The Campbell diagram without gyroscopic effect	10
Figure 6. Campbell diagram with gyroscopic effect	10
Figure 7. Scheme of a rotor bearing system analysis [42]	11
Figure 8. Element model of Timoshenko beam [43]	12
Figure 9 Finite element model of micro-drill spindle system	13
Figure 10 Euler angles of the element	14
Figure 11 Unbalance force due to eccentric mass of micro-drill	
Figure 12 Relations between shear deformation and bending deformation	19
Figure 13. Nodal points on the zero surface	
Figure 14 Conical element	
Figure 15.Bearings stiffness and bearing model	
Figure 16 Finite element model of spindle system and MDS drill	42
Figure 17 Top point response orbit of drill point	43
Figure 18 Drill point response orbit at the steady state	43
Figure 19 Amplitude of drill point response	44
Figure 20 Amplitude of drill point response at the initial transient time	44
Figure 21 Amplitude of drill point response at the steady state	45
Figure 22. x deflection of drill point	45
Figure 23. x deflection of drill point at the initial transient time	
Figure 24. x deflection of drill point at the steady state	
Figure 25. y deflection of drill point	
Figure 26. y deflection of drill point at the initial transient time	47
Figure 27. x deflection of drill point at the steady state	47
Figure 28. Torsional response of drill point	47
Figure 29. Torsional response of drill point at the initial transient time	
Figure 30. Torsional response of drill point at the steady state	
Figure 31. Drill point response orbit	49
Figure 32. Drill point response orbit at the steady state	49
Figure 33. Amplitude of drill point response	50
Figure 34. Amplitude of drill point response at the initial transient time	50
Figure 35. x deflection of drill point	50
Figure 36. x deflection of drill point at the initial transient time	51
Figure 37. x deflection of drill point at the steady state	51

Figure 38. y deflection of drill point	51
Figure 39. y deflection of drill point at the initial transient time	52
Figure 40. y deflection of drill point at the steady state	52
Figure 41. Torsional response of drill point	52
Figure 42. Torsional response of drill point at the initial transient time	53
Figure 43. Torsional response of drill point at the steady state	53
Figure 44. Drill point response orbit	53
Figure 45. Amplitude of drill point response	54
Figure 46. Drill point response orbit	54
Figure 47. Drill point response orbit at the steady state	55
Figure 48. Amplitude of drill point response	55
Figure 49. Drill point response orbit	56
Figure 50. Amplitude of Drill point response	56
Figure 51. Drill point response orbit at the steady state	56
Figure 52. Amplitude of Drill point response	57
Figure 53. x, y deflection of drill point	57
Figure 54. Torsional response of drill point	57
Figure 55. Drill point response orbit	58
Figure 56. Drill point response orbit at the steady state	58
Figure 57. Amplitude of drill point	59
Figure 58. Torsional response of drill point	59
Figure 59 A shaft under buckling load	60
Figure 60. Amplitude of drill point at steady state (Fz =-1 N)	61
Figure 61. Amplitude of drill point at steady state (Fz =-2.5 N)	62
Figure 62. Amplitude of drill point at steady state (Fz =-3.5 N)	62
Figure 63. Amplitude of drill point at steady state (Fz =-4.5 N)	63
Figure 64. Amplitude of drill point at steady state (Fz =-6 N)	63
Figure 65. Amplitude of drill point at steady state (Fz =-7.5 N)	64
Figure 66. Whirling orbit of drill point (Fz =-8.5 N)	64
Figure 67. Amplitude of drill point at steady state (Fz =-8.5 N)	65
Figure 68. Variation of the buckling loads with amplitude of drill point	65
Figure 69. Response orbit of drill point	66
Figure 70. Amplitude of drill point	66
Figure 71. Torsional response of drill point	67
Figure 72. Amplitude of drill point at the steady state	67
Figure 73. Torsional response of drill point at the steady state	67
Figure 74. Torsional response of drill point	68
Figure 75. Torsional response of drill point at the steady state	68
Figure 76. Variation of the torque with torsional deflection of drill point	69

Figure 77. Orbit of drill point at the steady state	70
Figure 78. Torsional response of drill point	70
Figure 79. Bending response versus and the rotational speed of the system	71
Figure 80. Torsional response versus the rotational speed of the system	72
Figure 81. Response orbit of drill point	72
Figure 82. Transient orbit of drill point near the first critical speed	73
Figure 83. Amplitude of drill point near the first critical speed	73
Figure 84. x deflection of drill point near the first critical speed	73
Figure 85. y deflection of drill point near the first critical speed	74
Figure 86. Torsional response of drill point near the first critical speed	74
Figure 87. Orbit response of drill point near the second critical speed	74
Figure 88. Torsional response of drill point near the second critical speed	75
Figure 89. Amplitude of drill point near the second critical speed	75
Figure 90. Transient bending responses for the various accelerations (linear plot)	76
Figure 91. Transient bending responses for the various accelerations (log10 plot)	76
Figure 92. Zoom in of transient bending responses for the various accelerations at the 1 st critical spec	ed 77
Figure 93. Transient torsional responses for the various accelerations at the critical speed (linear plot	t) 77
Figure 94. Zoom in of transient torsional responses for the various accelerations at the critical speed	
(linear plot)	78
Figure 95. The micro-drill dimensions and clamped schematic	81
Figure 96. The historic of objective function of the bending response in the first numerical example	82
Figure 97. Orbit response of the initial drill point at the steady state	83
Figure 98. Amplitude response of the initial drill point	83
Figure 99. Orbit response of the optimum drill point at the steady state	83
Figure 100. Amplitude response of the optimum drill point	84
Figure 101. Bending response of the optimum drill point	84
Figure 102. Torsional response of the optimum drill point	84
Figure 103. Bending response of between the initial and optimum of drill point	85
Figure 104. Torsional response of between the initial and optimum of drill point	85
Figure 105. The historic of objective function of the bending response in the second numerical	
example	86
Figure 106. Orbit response of the optimum drill point at the steady state	86
Figure 107. Amplitude response of the optimum drill point	87
Figure 108. Bending response of between the initial and optimum of drill point	87
Figure 109. Torsional response of between the initial and optimum of drill point	88
Figure 110. Bending response of between the initial and 2 optimum of drills point	88
Figure 111. Torsional response of between the initial and 2 optimum of drills point	89

List of Tables

- Table 3.1 Structure dimensions and parameters of ZTG04-III micro-drilling machine
- Table 3.2 The geometric features of Union MDS
- Table 3.3 Coordinates of nodal points 1-6 on the zero-surface
- Table 3.4 Cross-sectional properties of flute part of MDS
- Table 4.1 Dimensions of Union MDS (element 10)
- Table 4.2 The parameters of the finite element model of the micro-drill spindle system

E,G	Young's modulus, Shear modulus			
C_{ij}, C_{ϕ}	Damping coefficient and torsional damping of bearing; i, $j = x$, y			
I_{av}, Δ	Mean and deviatoric moment of area of system element			
\mathbf{I}_{p}	Polar moment of area of system element			
I_u, I_v	Second moments of area about principle axes U and V of system element			
k _s	Transverse shear form factor			
K_{ij}, K_{ϕ}	Stiffness coefficient and torsional stiffness of bearing; i, $j = x$, y			
L, Α, ρ	Length, are and density of system element element			
F _z , T _q	Thrust force and torque			
N _t , N _r , N _s	Shape functions of translating, rotational and shear deformation displacements,			
	respectively			
Z	Axial distance along system element element			
T, P, W	Kinetic, potential energy and work			
q	DOF vector od fixed coordinates			
(u, v)	Components of the displacement in U and V axis coincident with principal axes of system			
	element			
(x,y)	Components of the displacement in X and Y in fixed coordinates			
γ_u, γ_v	Shear deformation angles about U and V axes, respectively			
γ_x, γ_y	Shear deformation angles about X and Y axes, respectively			
e_u, e_v	Mass eccentricity components of system element in U and V axes			
θ_u, θ_v	Angular displacements about U and V axes, respectively			
θ_x, θ_y	Angular displacements about U and V axes, respectively			
Φ	Spin angle between basis axis and X about Z axis			
φ, θ, ψ	Euler's angles with rotating order in rank			
Ω	Operating speed			
φ	Torsional deformation			
Subscript and Superscript				
$\{.\},\{'\}$	To be referred to as derivatives of time and coordinate			
s, c, f	Superscript for cylinder, conical, flute element			

Nomenclature

t Superscript for transpose matrix

Acknowledgements

This research was carried out from the month of March 2014 to June 2015 at Mechanical Engineering Department, National Chiao Tung University, Taiwan.

I would like to thank and greatly appreciate my respected advisor, Professor An - Chen Lee, for his patient guidance, support and encouragement throughout my entire work. He always gives me the most correct direction to solve the problems in my studies. In addition, I also would like to thank all my lab mates, especially Mr. Nguyen Danh Tuyen for his discussion, kind help and valuable feedback. I also gratefully acknowledge other teachers and my classmates.

Finally, I would also like to thank my parents, my wife, my daughter and best friends for their support throughout my studies, without which this work would not be possible.

National Chiao Tung University Hsinchu, Taiwan, July 14th Hoang Tien Dat

Table of Contents

ABSTRACT .		111
LIST OF FIG	URES	IV
LIST OF TAE	BLES	VII
Nomencla	ΓURE	VIII
ACKNOWLE	DGEMENTS	IX
CHAPTER 1.	INTRODUCTION	1
1.1 Re	SEARCH MOTIVATION	1
1.2 LITER	ATURE REVIEW	2
1.3 Objec	TIVES AND RESEARCH METHODS	4
1.4. Orga	NIZATION OF THE THESIS	5
CHAPTER 2.	ROTOR DYNAMICS SYSTEMS	6
2.1 Ro	TOR VIBRATIONS	6
2.1.1.	Longitudinal or axial vibrations.	6
2.1.2.	Torsional vibrations.	6
2.1.3.	Lateral vibrations	7
2.2 Gy	ROSCOPIC EFFECTS	7
2.3 TE	RMINOLOGIES IN ROTOR DYNAMICS	7
2.3.1.	Natural frequencies and critical speeds	7
2.3.2.	Whiling	8
2.3.3.	Mode shapes	8
2.3.4.	Campbell diagram	9
2.4 DE	SIGN OF ROTOR DYNAMICS SYSTEMS	11
CHAPTER 3.	DYNAMIC EQUATION OF MICRO-DRILL SYSTEMS	12
3.1 Fin	IITE ELEMENT MODEL OF THE SYSTEM	12
3.1.1.	Timoshenko's beam	
3.1.2.	Finite element modeling of micro-drill spindle	
3.2. Mo	DTIONAL EQUATIONS OF SYMMETRIC AND ASYMMETRIC ELEMENTS	14
3.2.1.	Hamilton's equation of the system	15
3.2.2.	Shape functions	19
3.2.3. I	Finite equation of motions	22
3.2.4.	Motional equation of flute element (asymmetric part)	27
3.2.5.	Motional equation of cylinder element	