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Preface

This book contains 103 highly selected problems used in the training and testing of
the U.S. International Mathematical Olympiad (IMO) team. It is not a collection of
very difficult, impenetrable questions. Instead, the book gradually builds students’
trigonometric skills and techniques. The first chapter provides a comprehensive in-
troduction to trigonometric functions, their relations and functional properties, and
their applications in the Euclidean plane and solid geometry. This chapter can serve
as a textbook for a course in trigonometry. This work aims to broaden students’
view of mathematics and better prepare them for possible participation in various
mathematical competitions. It provides in-depth enrichment in important areas of
trigonometry by reorganizing and enhancing problem-solving tactics and strategies.
The book further stimulates interest for the future study of mathematics.

In the United States ofAmerica, the selection process leading to participation in the
International Mathematical Olympiad (IMO) consists of a series of national contests
called the American Mathematics Contest 10 (AMC 10), the American Mathematics
Contest 12 (AMC 12), theAmerican Invitational Mathematics Examination (AIME),
and the United States of America Mathematical Olympiad (USAMO). Participation
in the AIME and the USAMO is by invitation only, based on performance in the
preceding exams of the sequence. The Mathematical Olympiad Summer Program
(MOSP) is a four-week intensive training program for approximately 50 very promis-
ing students who have risen to the top in the American Mathematics Competitions.
The six students representing the United States ofAmerica in the IMO are selected on
the basis of their USAMO scores and further testing that takes place during MOSP.



viii Preface

Throughout MOSP, full days of classes and extensive problem sets give students
thorough preparation in several important areas of mathematics. These topics in-
clude combinatorial arguments and identities, generating functions, graph theory,
recursive relations, sums and products, probability, number theory, polynomials,
functional equations, complex numbers in geometry, algorithmic proofs, combina-
torial and advanced geometry, functional equations, and classical inequalities.

Olympiad-style exams consist of several challenging essay problems. Correct
solutions often require deep analysis and careful argument. Olympiad questions can
seem impenetrable to the novice, yet most can be solved with elementary high school
mathematics techniques, cleverly applied.

Here is some advice for students who attempt the problems that follow.

• Take your time! Very few contestants can solve all the given problems.

• Try to make connections between problems. An important theme of this work
is that all important techniques and ideas featured in the book appear more
than once!

• Olympiad problems don’t “crack” immediately. Be patient. Try different ap-
proaches. Experiment with simple cases. In some cases, working backwards
from the desired result is helpful.

• Even if you can solve a problem, do read the solutions. They may contain
some ideas that did not occur in your solutions, and they may discuss strategic
and tactical approaches that can be used elsewhere. The solutions are also
models of elegant presentation that you should emulate, but they often obscure
the tortuous process of investigation, false starts, inspiration, and attention to
detail that led to them. When you read the solutions, try to reconstruct the
thinking that went into them. Ask yourself, “What were the key ideas? How
can I apply these ideas further?”

• Go back to the original problem later, and see whether you can solve it in a
different way. Many of the problems have multiple solutions, but not all are
outlined here.

• Meaningful problem-solving takes practice. Don’t get discouraged if you have
trouble at first. For additional practice, use the books on the reading list.



Acknowledgments

Thanks to Dorin Andrica and Avanti Athreya, who helped proofread the original
manuscript. Dorin provided acute mathematical ideas that improved the flavor of
this book, while Avanti made important contributions to the final structure of the
book. Thanks to David Kramer, who copyedited the second draft. He made a number
of corrections and improvements. Thanks to Po-Ling Loh, Yingyu Gao, and Kenne
Hon, who helped proofread the later versions of the manuscript.

Many of the ideas of the first chapter are inspired by the Math 2 and Math 3 teaching
materials from the Phillips Exeter Academy. We give our deepest appreciation to the
authors of the materials, especially to Richard Parris and Szczesny “Jerzy” Kaminski.

Many problems are either inspired by or adapted from mathematical contests in
different countries and from the following journals:

• High-School Mathematics, China

• Revista Matematicǎ Timişoara, Romania
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