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SUMMARY 
Axial Flux Permanent-Magnet (AFPM) machine is a multivariable object due to its multivariable 

mathematical model which is defined by the matrix equations: voltage equation, flux equation, 

torque equation and motion equation. Especially, the complex inductance matrix in the machine’s 

mathematical description causes difficulties in analyzing to build its mathematical model. This 

paper proposes a method of applying perpendicular transformation to simplify the machine’s 

model to help the design of controller easier. 
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INTRODUCTION
*
 

Axial Flux Permanent - Magnet motor 

(AFPM) has many advantages such as: high 

performance, high ratio of power and size, 

high power density, long life, small moment 

of inertia, wide speed range, high ratio of 

torque and current, less affected by 

interference, and robust [1-4]. Thus, AFPM 

motors are used widely in high quality speed 

variable electrical drive systems such as 

industrial robots, CNC machines, medical 

equipment, and flywheels in energy storage 

systems and AFPM motors have the almost 

absolute advantages in electric cars. The basic 

differences between AFPM motor and other 

motors are that the electromotive force of 

AFPM motor is trapezoid wave form due to 

its centralized windings (the electromotive 

force of other motors are sinusoidal wave 

form due to distributed windings). Because of 

trapezoid electromotive force, AFPM motor 

has characteristics similar to characteristics of 

DC motor, high power density, high 

capability of torque generation, and high 

performance. 

When the application such as electrical drive 

system for grinder that requires very high 

speed (>10.000 rpm) or liquid Helium 

                                                 
*
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pump system which has very low temperature 

(< 0
o
C). AFPM motor is used in combination 

with two radial magnetic bearings arranged at 

the two ends of the motor sharp. If we want 

the rotor to rotate, it must be levitated and not 

in contact with the stator, so the rotor can 

move axially. To prevent the rotor from 

translating axially, an axial magnetic bearing 

must be added. This makes the system 

structure becomes bulky. Recent studies 

proposed the models that integrate axial 

magnetic bearings into the motor’s stator 

windings in order to reduce the overall size of 

the system [9]. 

 

 

 

 

 

 

 

 

 

 

Fig.1 presents the 3D-drawing of a AFPM 

motor with integrated radial magnetic bearing 

at the two ends of the sharp  (not described in 

the figure) [5-7]. 

Fig.1:  3D-Drawing of an AFPM motor 

integrated two radial magnetic bearing 

Permanent magnets 

Windings of stator 
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(4

) 

Fig.2 shows the physical model of the motor 

in Fig.1. 

 

 

 

 

 

 

 

 

 

 

 

Fig.2: Physical model of AFPM 

The six-phase system shows in Fig.2 is split 

into two three-phase systems motor 1 (M1) 

and motor 2 (M2) shown in Fig.3a and 

Fig.3b. 

 

 

 

 

 

 

Fig.3: a) Physical model of M1;  

b) Physical model of M2 

 

Fig.4:  a) Space vectors of the flux and 

magnetomotive force; 

b) Phase angle of current, voltage and flux. 
The parameters of two motors are shown on 

the graph of flux vector space and 

electromotive force as Fig. 4. The next 

contents  build the mathematical model to 

bring simpler model then design and test 

controllers, evaluate the effectiveness of the 

orthogonal transformation by simulation. 

MATHEMATICAL MODEL OF AFPM AND 

ORTHOGONAL TRANSFORMATION 

The analysis of 3-phase motor is based on 

orthogonal transformation of the matrices to 

make AFPM’s mathematical model similar to 

that of DC motor [10,11].  

Multi – variable mathematical model of 

AFPM 

Write the motor’s voltage equations in matrix 

form and use the operator p instead of 

differential notation d/dt: 
Voltage balance equation for M1: 

      

A1 1 A1 A1

B1 1 B1 B1

C1 1 C1 C1

p p p p

u R 0 0 0 i

u 0 R 0 0 i
p

u 0 0 R 0 i

U 0 0 0 R I









     (1)

 Or:     u Ri p                  (2) 

Where: A1 B1 C1 pu ,u ,u ,U , A1 B1 C1 pi ,i ,i ,I , 

A1 B1 C1 p, , ,    : instantaneous values of voltage, 

current and flux of the phase windings of stator, 

and rotor, respectively. 

Flux equation of M1: 

Fluxes of 3-phase stator windings and rotor 

windings are expressed by matrix equation 

as follows: 

     

A1 A1A1 A1B1 A1C1 A1 p A1

B1 B1A1 B1B1 B1C1 B1 p B1

C1 C1A1 C1B1 C1C1 C1 p C1

p pA1 pB1 pC1 pp p

L L L L i

L L L L i

L L L L i

L L L L I









      (3) 

Where: Elements on the principal diagonal 

are self-inductances of the stator windings 

and rotor excitation winding, other elements 

are mutual  inductances between windings. 

For shortage and simplification, (3) can be 

rewritten in matrix form: 

Where: 
T

s A1 B1 C1    ; 

T

s A1 B1 C1i i i i  

ms ts ms ms

ss ms ms ts ms

ms ms ms ts

1 1
L L L L

2 2

1 1
L L L L L

2 2

1 1
L L L L

2 2

 
   

 
    
 
 
   
  

             (4a) 

T

ps sp

0 0

0 0

ms

0 0

L L

cos cos( 120 ) cos( 120 )

L cos( 120 ) cos cos( 120 )

cos( 120 ) cos( 120 ) cos

  

  

  

 

  
 

    
   

(4b) 
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(13)

1 11

1 1

T
pT0

1 c

di L
L ( R )i L u

dt

nnd L
i i M

dt 2J J

d

dt











 
   




 





Or:   Li                     (5) 

Substitute the flux equation into the voltage 

balance equation, we have: 

di dL di dL
u Ri p( Li ) Ri L i   Ri L i

dt dt dt d



           (6)  

Motion equation 

In general, the motion equation of the 

electrical drive system as follows: 

   
đt c

p p p

J d D K
M M

n dt n n


                  (7) 

Where: 
c pM ,J ,D,K ,n  are torque load, moment 

of inertia, proportional coefficient of torque 

load versus angular speed, double of pole. For 

the constant torque load, then:

 đt c

p

J d
M M

n dt


                            (8) 

Torque equation 

Based on the principle of 

electromechanical energy conversion, in 

multi-winding motor, electromagnetic energy 

is:  
T T

m

1 1
W i i Li

2 2
                   (9) 

Electromagnetic torque is equal to 

partial derivative with respect to angular 

displacement 
m of the electromagnetic 

energy in the motor, when the current is 

constant; there is only one variable that 

is
m , m p/ n  , hence: 

 
đ

m m

t p

m i consti const

W W
M n

 


 
 
 

      (10)     

Substitute the equation (9) into (10), as well 

as consider the relationship between the 

expressions (4a) and (4b):  

đ

sK
T T

t p p

Ks

0 L
1 L 1

M n i i n i i
2 2

L 0







 
  

   
  

  

 (11)             

  T T T

s p A1 B1 C1 pi i I i i i I   

 

 

 

 

 

 

 

 

 

 

 

Mathematical model of 3-phase 

synchronous motor 

The combination of (6), (8) and (11) gives 

multivariable mathematical model of 3-phase 

synchronous motor when the motor is under 

constant torque load: 

The set of equations (12) can be written in 

formal form of nonlinear state equations (13): 

Because the mathematical model has a 

complex matrix of inductances, it is difficult 

to use for analysis. For the convenience, 

coordinator transformations are usually used 

to simplify the model. The mathematical 

model of Motor no.2 is similar to Motor no.1 

but notice that the index “1” should be 

replaced by index “2”. 

Orthogonal transformations and DC motor 

equivalent model 

Orthogonal transformations 

 To simplify the model, we have to simplify the 

flux equation firstly. If the physical model of 

synchronous motor (Fig.5a) can be converted 

into equivalent model of DC motor (Fig.5b), 

after that apply control methods for DC motor 

then the problem becomes much more simple. 

 

 

 

 

 

 

 

Fig.5: a) Physical model of three-phase AC windings;  

  b) Equivalent two-phase AC windings model. 

If we set the same dynamic magnet generated 

as reference, the system of 3 three-phase AC 

b)  

(12)

1

1 1 1

T

dt1 p 1 c

p

di L
u Ri L i

dt

1 L J d
M n i i M

2 n dt

d

dt












   

 


   
 




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A A

3/ 2 B B

0 C C

1 1
1

2 2
i i i

2 3 3
i C i 0 i

3 2 2
i i i

1 1 1

2 2 2





 
  

      
      

        
           
 
 
 

conductors in Fig.5a and the system of 2 

crossed conductors in Fig.5b are equivalent. 

In other hand A B Ci ,i ,i  in three-phase 

coordinate and i ,i   in two-phase coordinate 

are equivalent, they can both generate a same 

rotational magnetomotive forces. 

Assuming that u and i are voltage and current 

vectors in a system of coordinators,                   

A A

B B

C C

u i

u u ; i i

u i

   
   

 
   
      

       (14)   

u’ and i’ are voltage and current vectors in a 

new one:         

u i
u ; i

u i

 

 

    
         

                            (15)  

The coordinator transformation is defined as 

follows:                     

     uu A u                                   (16a) 

và:       ii A i               (16b) 

Where: 
u iA ,A  are transformation matrixes of 

real numbers. Assuming that the power is 

invariable, then:   
T T

A A B B C CP u i u i u i u i u i u i u i   
                  

(17)  Substitute (16a), (16b) into (17):  
T T T T T

i u i ui u ( Ai ) A u i A A u i u         

Yields:                
T

i uA A I                (18)     

I is identity matrix. The expression (18) is 

relationship between the transformation 

matrices under the condition of invariable 

power. In general, for simplification: 

i uA A A   

Then (8) becomes: TA A I  or:     
T 1A A                     (19) 

When the condition (19) is satisfied, the 

matrix A is called the orthogonal matrix.  

From that, we can find out the transformation 

matrix for current as the expression (20) and 

(21). In fact, they are also the transformation 

matrix for voltage and flux: 

           
3 / 2

1 1
1

2 2

2 3 3
C 0

3 2 2

1 1 1

2 2 2

 
  

 
 

  
 
 
 
 

             (20)  

 Contrary:
1

2 / 3 3 / 2

1
1 0

2

2 1 3 1
C C

3 2 2 2

1 3 1

2 2 2



 
 
 
 

   
 
 
  
  

       (21) 

According to the Fig.3, the motor M1 is fed 

by the system
1 1 1A ,B ,C and the motor M2 is fed 

by the system
2 2 2A ,B ,C . Both systems are 

transformed into two 2-phase 

system
1 1  and

2 2  . Performing vectors 

addition we have a system 
   shown in 

Fig.6. 

 
Fig.6: Vector graph of 2-phase current of AFPM 

Next, assuming φ is the angle between d axis 

and  axis and applies the 2-phase/2-phase 

transformation
2r / 2sC .  From which we can 

deduce: 

d

q

0 0

c os sin 0
2 2i i

i sin cos 0 i
2 2

i i
0 0 1





 

 

 
 

    
     
    
       

 
  

                (22)  

 

 

                                                                 (23) 

 

 

From (20), can be rewritten as follows to 

(23): Combining two above expressions, it is 

possible to obtain the transmitted matrix from 

3-phase coordinate ABC to 2-phase rotational 

coordinate dq0 as  

0 0

0 0

3s / 2r

c os cos 120 cos 120
2 2 2

2
C sin sin 120 sin 120

3 2 2 2

1 1 1

2 2 2

  

  

    
     

    
    

         
    

 
 
 

 (24)  
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đ

d 1 s q mp d

q d 1 s p q

p mp p p p

m

t p p q

p

u R L p L L i

u L R L p L . i

U L 0 R L p I

L
M n i

L



 



  


 




 



Inverse transformation matrix:  

0 0

2r / 3s

0 0

1
cos sin

2 2 2

2 1
C cos 120 sin 120

3 2 2 2

1
cos 120 sin 120

2 2 2

 

 

 

 
 

 
    

       
    

    
      

    

    (25)    

The formulas (24) and (25) are also used for 

voltage and flux transformation. 

Mathematical model of AFPM in dq 

coordinate 

Equivalent mathematical model of AFPM 

motor in 3-phase synchronous motor in the 

synchronous rotating rotor field oriented dq 

[1, 5, 6, 7, 8, 13 ] as follows: 

 

 

                                                                   (26) 

 

 

This relationship is relatively simple and 

similar to torque equation of DC motor.  

State equation of AFPM motor is: 

sqsd

sd s sq sd
sdsd sd

sq psd

s sd sq sq s
sqsq sq sq

Ldi 1 1
i i u

dt T L L

di L 1 1
i i u

dt L T L L




 


   



     



(27) 

The mathematical model (27) is represented 

in Fig.7. 

 
Fig.7: Mathematical model of  AFPM 

CONTROL DESIGN FOR AFPM [8,13] 

After using the orthogonal matrices and 

transformations the mathematical model of 

AFPM motor shown in Fig.1 becomes 

equivalent mathematical model of a motor 

that has one stator and one rotor. This has two 

advantages: 

- Easy to design control of current loop and 

speed loop, eliminate interactions between the 

two motors through controlling current 

components d 1 q1 d 2 q2i ,i ,i ,i (in Fig.3). 

- Axial attractive forces 
1 2F ,F become internal 

problem or the motor that we do not need to care. 

In special case, when two 3-phase voltage 

systems of two inverters provide to M1 and 

M2 having the same frequency and phase, we 

have a corresponding motor with double-time 

moment. In general case, we consider that the 

amplifiers are equally and phase shift φ. 

Base on mathematical model as Fig.7, we 

design Deadbeat controller to control the 

current for AFPM and PID controller for 

voltage control. The simulated structure of 

system is described in Fig.8. The simulation 

results presents the speed characteristic as 

showed in Fig.9 and moment characteristic 

showed in Fig.10. 

 
Fig.8: Simulation structure of AFPM 

AFPM parameters  

Rated power Pđm 350 W 

Rated voltage Uđm 400 V 

Rated frequency Uđm 20KHz 

Number of pole pairs np 1 

Residual flux density 1,45T 

Stator resistance Rs 2,3Ω 

Stator self-inductance Ls 11,3.10
-3

H 

Stator leakage inductance Lsl 5.10
-3

H 

Rotor self-inductance Lf 11,3.10
-3

H 

Basic direct-axis inductance Lsd 8,2.10
-3

H 

Basic quadrature-axis inductance Lsq 9,6.10
-3

H 

Mutual inductance Lm 9,43.10
-3

H 

Rotor inertia moment Jr 8,6.10
-6

H  

Rotor flux (permanent magnet) p 0,0126Wb 

Air gap between rotor and stator 

at the equilibrium position z0 

1,75.10
-

3
kgm

2 
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Fig.9: Speed characteristic 
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Fig.10: Moment characteristic 

Reviews: The simulation results proved 

orthogonal transformation, which has been 

applied for the  AFPM that is accurate. 

Comparing the simulation results with the 

study [9] that do not perform alternative 

equivalent is absolutely identical. 

CONCLUSION 

AFPM motor with integrated radial magnetic 

bearing at the two ends of the sharp, in 

working process its rotor does not only rotate 

but also moves axially. To prevent the rotor 

from moving axially and keep the motor 

compact, an axial magnetic bearing is 

integrated. 

By using the orthogonal transformations to 

transform coordinator systems the physical 

model of the motor as shown in Fig.3 is 

changed into that of an equivalent AFPM 

motor. That makes the control design for 

the motor simple and easy because the 

motor has only one degree of freedom as 

conventional motors. 

In this paper, the mathematical model of the 

motor has been built, the suitable controller is 

chosen and the simulation gives good results. 
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TÓM TẮT 

NGHIÊN CỨU ỨNG DỤNG PHÉP BIẾN ĐỔI TRỰC GIAO  

ĐỂ XÂY DỰNG MÔ HÌNH TOÁN HỌC CHO  

AXIAL FLUX PERMANENT-MAGNET MACHINE 
      

Đặng Danh Hoằng
1*

, Dương Quốc Tuấn
1
,  

Vũ Duy Hưng
2
, Nguyễn Hải Bình

2 

                                      1Trường Đại học Kỹ thuật Công nghiệp – ĐH Thái Nguyên, 

 2Trường Đại học Kinh tế Kỹ thuật Công nghiệp Hà Nội 

 
AFPM -  Động cơ đồng bộ từ thông dọc trục kích từ nam châm vĩnh cửu là đối tượng đa biến, do 

mô hình toán học nhiều biến số của nó được hình thành bởi các phương trình: ma trận điện áp, ma 

trận từ thông, mô men và chuyển động. Đặc biệt, trong mô tả toán học động cơ loại này có ma trận 

điện cảm tương đối phức tạp, khó sử dụng để phân tích xây dựng mô hình toán học. Bài báo đưa ra 

phương pháp nghiên cứu ứng dụng phép biến đổi trực giao để thay đổi mô hình, nhằm có được mô 

hình toán học thuận lợi cho thiết kế điều khiển động cơ.  

Từ khóa: Động cơ đồng bộ từ thông dọc trục, biến đổi trực giao, bộ điều khiển PID 
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