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SUMMARY 
Short-circuit is one of the most popular defects on the power transmission lines. Due to the 

presence of different types of short-circuit fault, in this paper we’ll consider only the two-phase 

short-circuit fault type on a three-phase transmission line. The model use a transmission line at 

220kV, 200 km long, frequency at 50Hz with different positions of the failure and different failure 

short-circuit resistances to test the proposed solutions. The input signals are only the voltages and 

currents at the beginning one-terminal of the transmission line. The math tool selected for this task 

is the decomposition algorithms by using Daubechies wavelets and MultiLayer Perceptron neural 

network (MLP). The numerical results will show the effectiveness of the proposed method. 

Keywords: Fault location, Transmission lines modeling, Reverse problem, short-circuit fault, 

Wavelet decomposition 
 

INTRODUCTION
*
  

The problem of short-circuit fault detection 

and its parameters estimation is one of the 

important tasks in a power transmission 

system. An accurate  location  of  the  fault  

will  allow  a faster  repair and a  faster 

system  restoration. That will also lower the 

cost of operation of the system. For each 

short-circuit fault, we often need to estimate 

three parameters: the moment of the fault, the 

position of the fault and the shortage 

resistance.  

In this paper, we present the idea and the 

results of a new method, which will use only 

the signals measured at the sending ends of 

the lines to detect and locate the two-phase 

short circuit happened on the line. This 

method will greatly reduce the number of 

hardware devices to be used. But we need to 

develop more complicate signal processing 

algorithms in order to be able to get the 

correct results. 

The mathematical tool used to process the 

data is the signal decomposition by using 

Daubechies wavelets. The wavelet solutions 

outperform the classical Fourrier 

decomposition method because they can give 
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not only the information about the harmonic 

frequencies in the signals but also the 

information about the moment that a specific 

frequency starts in a signal [4,5,6,7]. This 

advantage fits very well with the fault 

detection problems because when a fault occurs, 

there will be abrupt changes in signals on the 

lines, and as the consequence there will be some 

high frequencies newly appear in the signals.  

The signals (currents and voltages) of the 

three lines will be used to generate the feature 

vector for the detection and estimation blocks, 

which use the MLP (Multi Layer Perceptron) 

- one of the most popular artificial neural 

networks - to process the data. The numerical 

results will validate the proposed ideas. 

WAVELETS AND APPLICATIONS IN 

SIGNAL TIME- FREQUENCY ANALYSIS 

Wavelet is called an advancer development of 

signal decomposition than the classical 

Fourier method. In the Fourier method, a 

signal is decomposed into sinusoidal 

functions as the base functions [6,7]. Because 

the basis sinusoidal functions have 

“unlimited” domain (i.e. the range in which 

we may have function values greater than 

small ε is unlimited). Hence when a 

frequency appears in the Fourier 

decomposition results we can say that the 
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frequency exists all the time. The method 

quality is significantly reduced [1,3] for 

nonstationary signals, in which the 

components appear only for a part of the time 

range of the signal. Let’s consider the 

following example, in which a signal contains 

the different amplitude frequencies and they 

appear at different moments: 

2sin(2 2t)      for  t<0,3

f (t) 0,5sin(2 10t) for  0,3 t<0,7

sin(2 20t)       for  t 0,7

 


   
   

      (1) 

 
Figure 1. The Fourier decomposition of a 

non-stationary signal (top: Original signal, 

bottom: Amplitude spectrum) 

The signal and its Fourier decomposition are 

shown on the Fig. 1. It can be seen clearly 

that the performance is not good, the detected 

frequencies are not clear and the relative 

amplitudes are also very unsatisfied. This 

weakness of the Fourier method can be 

improved by applying the Fourier 

decomposition for a series of short-time 

windows of the signal. This solution is call 

the STFT (Short-Time Fourier Transform) [1] 

and it has some major disadvantages: the 

number of mathematical operations is high, 

the quality strongly depends on the width of 

the window (a wide window has a lower of 

signal resolution so that the moment detection 

is weak, a narrow window cannot find 

accurately the frequencies components).  

In those cases the wavelet methods come as 

an alternative for such non-stationary signals. 

The Daubechies wavelets (x) [3,4,5,6] are 

defined by: 

2N 1
k

2N 1 k

k 0

(x) 2 ( 1) h (2x k)


 



               (2) 

where N is the wavelets order, 0 2N 1h ,...,h  are 

the filter coefficients, which satisfy following 

conditions: 

N 1 N 1

2k 2k 1

k 0 k 0

2N 1 2l

k k 2l

k 2l

1
1.   h h                               (3)

2

1  for  l=0
2.   h h   l=0,1,N-1 (4)

0 for  l 0

 



 

 





 


 



 


 

and functions (x) are called mother wavelets 

and are calculated according to the recurrent 

formula: 

2N 1

k

k 0

(x) 0   x \ [0,2N-1]                      (5)

(x) 2 h (2x k)                         (6)




   

   

R

 

The coefficients hi are estimated from (5), (6) 

with the additional conditions on 

orthonormality of the set of wavelets and 

mother wavelets [4,6,7]. For example, for 

N=1, we have 0 1[h ,h ]= 1/ 2,1/ 2 
 

, and for 

N=2 we have: 

 0 1 2 3[h ,h ,h ,h ]= 0,183, 0,317,1,183, 0,683  

. From the above wavelets we can form a set 

of orthonormal functions 
j/ 2 j

j,k (x) 2 (2 x k)     for indices j,kZ . 

The base wavelet functions have a major 

different when comparing with the basis 

sinusoidal. All of them have a limited range 

of domain [3,4,5], in which the values of the 

functions are greater than a threshold  > 0. 

With these wavelets, a time function can be 

decomposed into its components by using the 

next formula: 

a.b

1 x b
f (x) w (f ) f (x) dx  (7)

aa





 
   

 
  

where a is the scaling coefficient and b is the 

shift coefficient. For big values of a, the 

wavelet changes its values faster. It means 

that the given wavelet can be used better to 

approximate the higher frequencies. 
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Analogically, a wavelet with smaller a can be 

used to approximate the lower frequencies. 

By changing the values of the shift coefficient 

b we can estimate the moment a given 

frequency appear in the signal. Due to that not 

only we can find different frequencies but 

also their moments of appearance. As an 

example, let’s consider the above example for 

the signal from (1) with Daubechies wavelet 

of orders less or equal 4. The results are 

presented on Fig. 2. 

All of the 3 non-stationary components were 

perfectly detected. The 2sin(2.2t) component 

is detected and included in a4, the 

0,5sin(2.10t) component is detected and 

included in d4 and the sin(2.20t) component 

is included in d2 and d3. And the moments of 

changes are also clearly indicated as the 

sudden change of amplitudes on the a4, d2 and 

d1. For non-stationary signals, the 

performance of the wavelet methods is much 

great improved and it outstands the classical 

Fourier method. 

 

Figure 2. The decomposition of a non-stationary 

signal by using 4th order Daubechies wavelets 

(top-left: original, others: decomposed 

components) 

THE MLP AND ITS APPLICATION IN 

ESTIMATION OF THE FAULT PARAMETERS 

As mentioned above, the MLP will play the 

role of the reverse model as seen on Fig. 3.  

 
Figure 3. The reverse model using MLP to 

estimate the fault parameters 

Having the given 183-component input 

vectors, the MLP should calculate two desired 

outputs: d1 - the approximated value of the 

fault resistance of the fault and d2 - the 

approximated distance from the beginning of 

the lines to the fault. 

 
Figure 4. The structure of the MLP with one  

hidden layer 

The MLP [2] with one hidden layer of 

neurons is a nonlinear model and has the 

structure as shown on Fig. 4. Its can described 

by the triple  , ,N M K , where N is the number 

of inputs signals, M is the number of hidden 

neurons, K is the number of output signals. 

Once those numbers are selected as well as 

the transfer functions for hidden and output 

layers, the MLP still have the connection 

weights that should be trained in order to fit 

the output signals of MLP to the desired 

values. Let the weights between input layer 

and hidden layer be noted as Wij and the 

weights between hidden and output layers be 

noted as Vij. Let the transfer function of 

neurons in the hidden layer is f1, the transfer 

function of neurons in the output layer is f2. 

The output signals from MLP can be derived 

with following feed forward steps: 

The total input of each hidden neuron: 

0

N

i j ij

j

u x W


   for 1,2, , .i M  

The output of each hidden neuron: 1( )i iv f u  

for 1,2, , .i M  

The total input of each output neuron: 

0

M

i j ij

j

g v V


   for 1,2, , .i K  
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The output of MLP network: 2( )i iy f v  for 

1,2, , .i K  

The cost function to be minimized during the 

training process is defined as the sum squared 

of errors for all data samples: 
2

1

p

i i

i

E


  y d  

where p is the number of data samples (i.e. 

851 in this paper), .  is the Euclidean 

distance between the output of the MLP 

network and the desired output from the 

samples set. 

The details about MLP structure, its 

parameters and training algorithms can be 

founded in [2]. The default training algorithm 

for MLP in Matlab Neural Network Toolbox 

is the Levenberg - Marquardt algorithm [2]. 

SIMULATION OF TWO-PHASE SHORT-

CIRCUIT FAULT ON A THREE -PHASE 

TRANSMISSION LINE 

By using the SimPower Toolbox of Matlab, 

the three-phase transmission line model was 

built as seen on Fig. 5. 

 

Figure 5. The model to simulate a three-phase 

transmission line with two-phase short-circuit 

fault (between phase B and phase C) 

In this paper, the transmission line is modeled 

by using following “static” parameters:  

Voltage source Vs(t):  symmetric, Y-

connected with ( ) 220 2 sin(314 ) .aV t t kV  

Internal impedance of each phase source is 

simulated by a resistance  0.893aR    

connected in serial with an impedance 

16.58 .aL mH  

Equivalent impedances of source and load 

connected between the transmission line (3 

elements are in parallel): 180 ;R    

25L mH  and 120 .C F  

Characteristic parameters of the 

transmission line: 

 

   

   

   

1 0

1 0

1 0

, 0.01273,0.3864 / ;

, 0.9337,4.1264 / ;

, 12.74,7.751 / .

R R km

L L mH km

C C nF km

 





 

The length of the line: 200 .l km  

Number of sections: 10 (that makes the length 

of each section equal 20km). 

The equivalent load connected to the end of 

the line is defined as 110 ; / 300L LQ MW P Q   

at 220 .aV kV  

The two-phase short-circuit fault event is 

simulated by closing down a switch 

connecting two phases. To have a database of 

different cases of faults, we set 3 parameters 

of each fault: 

The location of the fault (defined by lshort - the 

distance from the beginning of the lines to the 

fault location): 9 different places on the line 

 20,40,...,180 .shortl km The fault resistance: 6 

different values  

 0,50,100,150,200,250 .shortR    

The time moment of the short-circuit fault: 21 

time moments during one period 

 0 0,1, ,20T ms   (every  1ms during 1 

period of 20ms). 

All possible combinations of those 3 

parameters will give 9 6 21 1134    cases of 

simulations and data samples. For each case, 

we get the instantaneous phase current signals 

at the start of the line ( ), ( ), ( )a b ci t i t i t  sampled 

at 1 kHz frequency. 

The examples of generated signals are given 

in Fig. 5. From those samples, 851 samples 

(~75% of the set) were used to train the 

reverse model, the rest 283 (~25% of the set) 

samples were used to test the trained model. 
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The testing samples were uniformly selected 

from the database (it means the cases number 

4, 8, …, 1132 were selected). 

SIMULATION RESULTS 

Using Wavelet decompositions to detect the 

fault moment 

For each case, the values of 3 input currents 

are input into the Daubechies’ wavelet 

decomposition block to detect the moment of 

sudden changes in those signals. As the 

current signals are discrete sampled with the 

frequency 1kHz, if the expected accuracy is 

about  milisecond then we need the ability to 

detect the changes in 1 sampling period. For 

this purpose, we will apply the wavelet up to 

9
th
 order [3,4,5]. 

 

Figure 6. The decomposition of the current signal 

of phase B from Fig. 9 into 9
th
  

order Daubechies wavelets 

Figure 6 presents an example of current signal 

decomposition (for phase B) by using the 9
th
 

order Daubechies wavelet. First of all, the d1 

component was extracted [3,4,5,6] from the 

original signal     u1 = u1(t) and the rest a1 = 

u1 - d1 was used for next step. Recursively, 

the d2 component was extracted from a1 and 

the rest a2 = a1 - d2 was to be used next,… 

After 4 steps of decomposition we received 4 

components d1,...,d4 and the rest of the signal 

a4. We can observe the tendency that the 

higher the index i the lower of their frequency 

of detected signal in di. According to that, the 

fastest changes should be included in d1. 

This observation will lead to the algorithm for 

detection of the fault moment, which will be 

discussed in the next session. 

For a better explanation of the algorithm, the 

component d1 is redrawn on the Fig. 7 with 

greater zoom in. There are two clearly visible 

transient states on d1. Let’s omit the first 

transient (corresponded to 20 samples at the 

sampling frequency was 1kHz), which was 

caused by the window effect. 

 

Figure 7. The zoomed – in d1 for phase B  

from Fig. 6 

During the fault-free state, the values of d1 

signal are very small, so let’s define a 

threshold value equals five times of the 

maximum value of d1 from this period: 

 1
t [20ms,40ms]

threshold 5 max d (t)                 (8)


   

When the instant values of d1 start to vary, we 

find the moment when it crosses the threshold 

 1 1
t

t min d (t) >threshold                        (9)  

After that, we look forward in the 

neighborhood of t1 (it was selected as the 

range [t1-10, t1+20]). At the sampling 

frequency 1kHz this range is equivalent to 1 

period after t1 and half period before t1. The 

moment of the fault will be assigned to the 

maximum of the value d1 in the range. 

   
1 1

short 1 short 1
t [ t 10,t 20]

T : d T = max d (t)         (10)
  

 

This search algorithm is performed for all 

three phases independently and the earliest 

moment among the 3 estimated values is used 

as the fault moment. 

The presented algorithm above was applied 

for all 1134 cases, which have been 

generated. The results are shown on Fig. 8.  
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Figure 8. The results for 1134 samples 

We can observed that the maximum error was: 

max i i
i 1 1134

E max y d =4(ms)                (11)
 

 

and the average value of errors is calculated as 

1134

i ii 1
average

y d
E =1,35(ms)       (12)

1134







where di is the real (expected) moment of the 

fault, yi is the moment estimated by using the 

proposed method. 

Using Neural network (MLP) for the 

estimation of fault location and fault resistance 

By using the method of trial-and-error, the 

MLP had 183 inputs, 10 hidden neurons (with 

tangent hyperbolic transfer function) and 2 

outputs (with linear transfer function). The 

network was trained with the Levenberg-

Marquardt algorithm for 200 iterations, during 

which the sum-squared error defined in (3) was 

greatly reduced as seen on the Fig. 9.  

 
Figure  9. The change of the cost function 

during the learning process  

of the designed MLP network 

From the start value of 0,929 (when the 

weights were initiated with random values), 

the final value SSE was only 2,86.10
-6

, which 

practically can be assumed to be 0. After that, 

the MLP was tested with 283 new data. We 

can see on Fig. 10 and Fig. 11 the expected 

outputs for the testing samples. The real 

outputs from the MLP and the error between 

the MLP outputs and the desired values are 

presented on Fig. 12 and Fig. 13. As it can be 

seen, the testing results are also very good. 

For the estimation of fault resistance (Fig. 

12), the mean value of error was only 0,69 

(compare to the range of 250) and the 

maximum value of error was only 5,57. 

 
Figure 10. The desired values of of fault 

resistance of the fault for testing data 

 
Figure 11. The desired values of location of the 

fault for testing data 

 
Figure 12. Output values from MLP for fault 

resistance estimation of the fault (top) and the 

estimation errors (bottom) 

For the estimation of fault location (Fig. 13), 

the mean value of error was only 155,6m 

(compare to the range of 200km) and the 

maximum value of error was 905,7m. Those 

results are quite good for practical 

applications and they can help to prove the 

quality of the proposed solution. 
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Figure 13. Output values from MLP for location 

estimation of the fault (top) and the estimation 

errors (bottom) 

CONCLUSION AND FURTHER 

DEVELOPMENT 

The paper has proposed a new approach to 

detect and locate the two-phase short-circuit 

fault on the three-phase transmission lines. 

The proposed method uses the Daubechies 

wavelet decompositions of the phase currents 

signals from the beginning of the transmission 

line only. For the selected configuration of the 

line, the achieved average error was less than 

1,35ms and the maximum error was 4ms. The 

proposed model can identify the location of 

the fault and the resistance at the fault point 

very accurate. The average error for 

location was less than 160m for the 200km 

lines, the average error for fault resistance 

was less than 1.  

This method can be extended and tested with 

other type of faults or switching events on the 

transmission lines, such as phase-to-ground 

short circuit, single phase interruptions,… 
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TÓM TẮT 

ỨNG DỤNG BIẾN ĐỔI WAVELET VÀ MẠNG NƠRON NHÂN TẠO PHÁT 

HIỆN SỰ CỐ NGẮN MẠCH 2 PHA TRÊN ĐƯỜNG DÂY TẢI ĐIỆN 
 

Trương Tuấn Anh
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Trường Đại học Kỹ thuật Công nghiệp – ĐH Thái Nguyên 

 
Ngắn mạch là một trong những lỗi phổ biến trên các đường dây truyền tải. Do có nhiều dạng sự cố 

ngắn mạch khác nhau, trong bài báo này chỉ xét khi xảy ra sự cố ngắn mạch 2 pha trên đường dây 

truyền tải 3 pha. Đường dây được sử dụng có cấp điện áp 220kV, chiều dài 200km tần số 50Hz với 

các vị trí khác nhau của sự cố và điện trở sự cố để thử nghiệm các giải pháp đề xuất. Các tín hiệu 

đầu vào là các điện áp và dòng điện ở một đầu đường dây. Các công cụ toán học được lựa chọn 

cho nhiệm vụ này là các thuật toán phân tích sử dụng wavelets Daubechies và mạng nơ-ron MLP. 

Các kết quả cho thấy hiệu quả của phương pháp đề xuất. 

Từ khóa: Vị trí sự cố, Mô hình đường dây truyền tải, bài toán ngược, sự cố ngắn mạch, phân tích 

Wavelet 
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