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TWO-PHASE SHORT-CIRCUIT FAULT DETECTIONS FOR TRANSMISSION
LINE USING WAVELET TRANSFORM AND NEURAL NETWORK

SUMMARY

Truong Tuan Anh”
College of Technology - TNU

Short-circuit is one of the most popular defects on the power transmission lines. Due to the
presence of different types of short-circuit fault, in this paper we’ll consider only the two-phase
short-circuit fault type on a three-phase transmission line. The model use a transmission line at
220kV, 200 km long, frequency at 50Hz with different positions of the failure and different failure
short-circuit resistances to test the proposed solutions. The input signals are only the voltages and
currents at the beginning one-terminal of the transmission line. The math tool selected for this task
is the decomposition algorithms by using Daubechies wavelets and MultiLayer Perceptron neural
network (MLP). The numerical results will show the effectiveness of the proposed method.
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INTRODUCTION

The problem of short-circuit fault detection
and its parameters estimation is one of the
important tasks in a power transmission
system. An accurate location of the fault
will allow a faster repair and a faster
system restoration. That will also lower the
cost of operation of the system. For each
short-circuit fault, we often need to estimate
three parameters: the moment of the fault, the
position of the fault and the shortage
resistance.

In this paper, we present the idea and the
results of a new method, which will use only
the signals measured at the sending ends of
the lines to detect and locate the two-phase
short circuit happened on the line. This
method will greatly reduce the number of
hardware devices to be used. But we need to
develop more complicate signal processing
algorithms in order to be able to get the
correct results.

The mathematical tool used to process the
data is the signal decomposition by using
Daubechies wavelets. The wavelet solutions
outperform the classical Fourrier
decomposition method because they can give
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not only the information about the harmonic
frequencies in the signals but also the
information about the moment that a specific
frequency starts in a signal [4,5,6,7]. This
advantage fits very well with the fault
detection problems because when a fault occurs,
there will be abrupt changes in signals on the
lines, and as the consequence there will be some
high frequencies newly appear in the signals.

The signals (currents and voltages) of the
three lines will be used to generate the feature
vector for the detection and estimation blocks,
which use the MLP (Multi Layer Perceptron)
- one of the most popular artificial neural
networks - to process the data. The numerical
results will validate the proposed ideas.

WAVELETS AND APPLICATIONS IN
SIGNAL TIME- FREQUENCY ANALYSIS

Wavelet is called an advancer development of
signal decomposition than the classical
Fourier method. In the Fourier method, a
signal is decomposed into sinusoidal
functions as the base functions [6,7]. Because
the basis sinusoidal  functions have
“unlimited” domain (i.e. the range in which
we may have function values greater than
small ¢ is unlimited). Hence when a
frequency  appears in  the  Fourier
decomposition results we can say that the
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frequency exists all the time. The method
quality is significantly reduced [1,3] for
nonstationary  signals, in  which the
components appear only for a part of the time
range of the signal. Let’s consider the
following example, in which a signal contains
the different amplitude frequencies and they
appear at different moments:

2sin(2r-2t)  for t<0,3
f(t)=<0,5sin(2x-10t) for 0,3<t<0,7 (1)
sin(2r-20t)  for t>0,7
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Figure 1. The Fourier decomposition of a
non-stationary signal (top: Original signal,
bottom: Amplitude spectrum)

The signal and its Fourier decomposition are
shown on the Fig. 1. It can be seen clearly
that the performance is not good, the detected
frequencies are not clear and the relative
amplitudes are also very unsatisfied. This
weakness of the Fourier method can be
improved by applying the Fourier
decomposition for a series of short-time
windows of the signal. This solution is call
the STFT (Short-Time Fourier Transform) [1]
and it has some major disadvantages: the
number of mathematical operations is high,
the quality strongly depends on the width of
the window (a wide window has a lower of
signal resolution so that the moment detection
is weak, a narrow window cannot find
accurately the frequencies components).

In those cases the wavelet methods come as
an alternative for such non-stationary signals.
The Daubechies wavelets y(x) [3,4,5,6] are
defined by:
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where N is the wavelets order, h,,...,h,, ;are
the filter coefficients, which satisfy following
conditions:

Nz—l 1 N-1
1. Yh,=—==>h,, 3)
— 2k \/E — 2k+1
N2l 1 for I=0
2. h.h, . = vI1=0,1,N-1 (4
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and functions ¢(x) are called mother wavelets
and are calculated according to the recurrent
formula:

o(x)=0 VxeR\[0,2N-1] (5)
o(x) =2 Z hp(2x — ) (6)

The coefficients h; are estimated from (5), (6)
with  the additional conditions on
orthonormality of the set of wavelets and
mother wavelets [4,6,7]. For example, for

N=1, we have [ho,hl]z[llﬁ,llﬁ], and for

N=2 we have:
[ho,hl,hz,h3]=[—0,183,—0,317,1,183, -0, 683]
. From the above wavelets we can form a set
of orthonormal functions

v (X)) = 22y (27x — k) for indices j,ke Z.

The base wavelet functions have a major
different when comparing with the basis
sinusoidal. All of them have a limited range
of domain [3,4,5], in which the values of the
functions are greater than a threshold ¢ > 0.
With these wavelets, a time function can be
decomposed into its components by using the
next formula:

£ >, (6= [ Fo9u X2

—jdx @)
a

where a is the scaling coefficient and b is the
shift coefficient. For big values of a, the
wavelet changes its values faster. It means
that the given wavelet can be used better to
approximate the higher frequencies.
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Analogically, a wavelet with smaller a can be
used to approximate the lower frequencies.
By changing the values of the shift coefficient
b we can estimate the moment a given
frequency appear in the signal. Due to that not
only we can find different frequencies but
also their moments of appearance. As an
example, let’s consider the above example for
the signal from (1) with Daubechies wavelet
of orders less or equal 4. The results are
presented on Fig. 2.

All of the 3 non-stationary components were
perfectly detected. The 2sin(2x.2t) component
is detected and included in a4 the
0,5sin(2w.10t) component is detected and
included in d4 and the sin(27.20t) component
is included in d, and ds;. And the moments of
changes are also clearly indicated as the
sudden change of amplitudes on the a4, d, and
d;.  For non-stationary  signals, the
performance of the wavelet methods is much
great improved and it outstands the classical
Fourier method.
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Figure 2. The decomposition of a non-stationary
signal by using 4th order Daubechies wavelets
(top-left: original, others: decomposed
components)

THE MLP AND ITS APPLICATION IN
ESTIMATION OF THE FAULT PARAMETERS

As mentioned above, the MLP will play the
role of the reverse model as seen on Fig. 3.

appr. Ry,
MLP =

X=[Kq,- K9]

Reverse
Model

appr. Lshcrl

Figure 3. The reverse model using MLP to

estimate the fault parameters
Having the given 183-component input
vectors, the MLP should calculate two desired
outputs: d; - the approximated value of the
fault resistance of the fault and d, - the
approximated distance from the beginning of
the lines to the fault.

Figure 4. The structure of the MLP with one
hidden layer

The MLP [2] with one hidden layer of
neurons is a nonlinear model and has the
structure as shown on Fig. 4. Its can described
by the triple (N, M, K), where N is the number
of inputs signals, M is the number of hidden
neurons, K is the number of output signals.
Once those numbers are selected as well as
the transfer functions for hidden and output
layers, the MLP still have the connection
weights that should be trained in order to fit
the output signals of MLP to the desired
values. Let the weights between input layer
and hidden layer be noted as Wj and the
weights between hidden and output layers be
noted as Vj. Let the transfer function of
neurons in the hidden layer is f;, the transfer
function of neurons in the output layer is f,.
The output signals from MLP can be derived
with following feed forward steps:

The total input of each hidden neuron:
N

UI :ZXJ 'WIJ fOf i :1,2,...,M.
j=0

The output of each hidden neuron: v; = f,(y;)

fori=12,...,M.
The total input of each output neuron:

M
j=0
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The output of MLP network: vy, = f,(v;) for
i=12,..,K.

The cost function to be minimized during the
training process is defined as the sum squared
of errors for all data samples:

P 2
E :Z"yi —dif
whefe p is the number of data samples (i.e.
851 in this paper), || is the Euclidean

distance between the output of the MLP
network and the desired output from the
samples set.

The details about MLP structure, its
parameters and training algorithms can be
founded in [2]. The default training algorithm
for MLP in Matlab Neural Network Toolbox
is the Levenberg - Marquardt algorithm [2].

SIMULATION OF TWO-PHASE SHORT-
CIRCUIT FAULT ON A THREE -PHASE
TRANSMISSION LINE

By using the SimPower Toolbox of Matlab,
the three-phase transmission line model was
built as seen on Fig. 5.
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Figure 5. The model to simulate a three-phase
transmission line with two-phase short-circuit
fault (between phase B and phase C)

In this paper, the transmission line is modeled
by using following “static” parameters:

Voltage source Vs(t): symmetric, Y-
connected with  V, (t) = 22072 sin(314t) kV.
Internal impedance of each phase source is

simulated by a resistance R, =0.893Q
connected in serial with an impedance
L, =16.58mH.
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Equivalent impedances of source and load
connected between the transmission line (3
elements are in parallel): R =180Q;
L=25mH and C =120uF.
Characteristic parameters of the
transmission line:
[Ri,Ry]=[0.01273,0.3864] 2/ km;
[Ll, LO] = [0.9337,4.1264] mH /km;
[C1,Co]=[12.74,7.751]nF / km.

The length of the line: | = 200km.

Number of sections: 10 (that makes the length
of each section equal 20km).

The equivalent load connected to the end of
the line is defined as Q, =110MW;P =Q, /300
at |V,|=220kv.

The two-phase short-circuit fault event is
simulated by closing down a switch
connecting two phases. To have a database of
different cases of faults, we set 3 parameters
of each fault:

The location of the fault (defined by Iyt - the
distance from the beginning of the lines to the
fault location): 9 different places on the line
lghort €[20,40,...,180]km. The fault resistance: 6

different
Rehort € [0,50,100,150, 200, 250] €.

values

The time moment of the short-circuit fault: 21

time  moments during one  period
ATy €[0,1,...,20]ms (every 1ms during 1
period of 20ms).

All  possible combinations of those 3

parameters will give 9x6x21=1134 cases of
simulations and data samples. For each case,
we get the instantaneous phase current signals
at the start of the line i, (t),i,(t),i.(t) sampled
at 1 kHz frequency.

The examples of generated signals are given
in Fig. 5. From those samples, 851 samples
(~75% of the set) were used to train the
reverse model, the rest 283 (~25% of the set)
samples were used to test the trained model.
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The testing samples were uniformly selected
from the database (it means the cases number
4,8, ..., 1132 were selected).

SIMULATION RESULTS

Using Wavelet decompositions to detect the
fault moment

For each case, the values of 3 input currents
are input into the Daubechies’ wavelet
decomposition block to detect the moment of
sudden changes in those signals. As the
current signals are discrete sampled with the
frequency 1kHz, if the expected accuracy is
about milisecond then we need the ability to
detect the changes in 1 sampling period. For
this purpose, we will apply the wavelet up to
9" order [3,4,5].
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Figure 6. The decomposition of the current signal
of phase B from Fig. 9 into 9"
order Daubechies wavelets
Figure 6 presents an example of current signal
decomposition (for phase B) by using the 9"
order Daubechies wavelet. First of all, the d;
component was extracted [3,4,5,6] from the
original signal Uy = uy(t) and the rest a; =
u; - d; was used for next step. Recursively,
the d, component was extracted from a; and
the rest a, = a; - d, was to be used next,...
After 4 steps of decomposition we received 4
components ds,...,ds and the rest of the signal
a4. We can observe the tendency that the
higher the index i the lower of their frequency

of detected signal in d;. According to that, the
fastest changes should be included in d;.

This observation will lead to the algorithm for
detection of the fault moment, which will be
discussed in the next session.

For a better explanation of the algorithm, the
component d; is redrawn on the Fig. 7 with
greater zoom in. There are two clearly visible
transient states on d;. Let’s omit the first
transient (corresponded to 20 samples at the
sampling frequency was 1kHz), which was
caused by the window effect.
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Figure 7. The zoomed — in d; for phase B
from Fig. 6

During the fault-free state, the values of d,
signal are very small, so let’s define a
threshold value equals five times of the
maximum value of d; from this period:

(jd,)]) ®)

When the instant values of d, start to vary, we
find the moment when it crosses the threshold

t, =min (/d,(t)])>threshold 9)

threshold =5- max
te[20ms,40ms]

After that, we look forward in the
neighborhood of t; (it was selected as the
range [t;-10, t,+20]). At the sampling
frequency 1kHz this range is equivalent to 1
period after t; and half period before t;. The
moment of the fault will be assigned to the
maximum of the value d; in the range.

Tshort : |d1 (Tshort ) (|d1(t)|) (10)

This search algorithm is performed for all
three phases independently and the earliest
moment among the 3 estimated values is used
as the fault moment.

The presented algorithm above was applied
for all 1134 cases, which have been
generated. The results are shown on Fig. 8.
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Figure 8. The results for 1134 samples
We can observed that the maximum error was:

200

Eow = i:rE%in —d;|=4(ms) (11)
and the average value of errors is calculated as
21134|y- _ |
E ==L~ =1,35(ms 12
average 1134 ( ) ( )

where d; is the real (expected) moment of the
fault, y; is the moment estimated by using the
proposed method.

Using Neural network (MLP) for the
estimation of fault location and fault resistance

By using the method of trial-and-error, the
MLP had 183 inputs, 10 hidden neurons (with
tangent hyperbolic transfer function) and 2
outputs (with linear transfer function). The
network was trained with the Levenberg-
Marquardt algorithm for 200 iterations, during
which the sum-squared error defined in (3) was
greatly reduced as seen on the Fig. 9.

100 120 140 180 180 200

o
raining Samples.

Figure 9. The change of the cost function
during the learning process
of the designed MLP network
From the start value of 0,929 (when the
weights were initiated with random values),
the final value SSE was only 2,86.10°, which
practically can be assumed to be 0. After that,

198

the MLP was tested with 283 new data. We
can see on Fig. 10 and Fig. 11 the expected
outputs for the testing samples. The real
outputs from the MLP and the error between
the MLP outputs and the desired values are
presented on Fig. 12 and Fig. 13. As it can be
seen, the testing results are also very good.
For the estimation of fault resistance (Fig.
12), the mean value of error was only 0,69Q2
(compare to the range of 250Q2) and the
maximum value of error was only 5,57Q.

Destination values of short resistance

uuuuuuuuuuuu

Figure 10. The desired values of of fault
resistance of the fault for testing data

mmmmmmmmmmmm

Figure 12. Output values from MLP for fault
resistance estimation of the fault (top) and the
estimation errors (bottom)

For the estimation of fault location (Fig. 13),
the mean value of error was only 155,6m
(compare to the range of 200km) and the
maximum value of error was 905,7m. Those
results are quite good for practical
applications and they can help to prove the

quality of the proposed solution.
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Figure 13. Output values from MLP for location
estimation of the fault (top) and the estimation
errors (bottom)

CONCLUSION AND

DEVELOPMENT

The paper has proposed a new approach to
detect and locate the two-phase short-circuit
fault on the three-phase transmission lines.
The proposed method uses the Daubechies
wavelet decompositions of the phase currents
signals from the beginning of the transmission
line only. For the selected configuration of the
line, the achieved average error was less than
1,35ms and the maximum error was 4ms. The
proposed model can identify the location of
the fault and the resistance at the fault point
very accurate. The average error for
location was less than 160m for the 200km

FURTHER

TOM TAT

lines, the average error for fault resistance
was less than 1Q.

This method can be extended and tested with
other type of faults or switching events on the
transmission lines, such as phase-to-ground
short circuit, single phase interruptions,...
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UNG DUNG BIEN POI WAVELET VA MANG NORON NHAN TAO PHAT
HIEN SU CO NGAN MACH 2 PHA TREN PUONG DAY TAI PIEN

Trwong Tuin Anh”

Truwong Dai hoc Ky thudt Cong nghiép — DH Thai Nguyén

Ngan mach 1a mot trong nhitng 15i ph bién trén cac duong day truyen tai. Do c6 nhiéu dang sy c6
ngan mach khac nhau, trong bai bao nay chi xét khi xay ra sy ¢6 ngan mach 2 pha trén duong day
truyén tai 3 pha. Pudng day dugc st dung c6 cap dién ap 220kV, chidu dai 200km tan s0 50Hz voi
cac vi tri khac nhau ctia sy ¢ va dién tré su ¢d dé thir nghiém cac giai phap dé xuét. Cac tin hiéu
d4u vao 1a cac dién ap va dong dién & mot diu duong day. Cac cong cu toan hoc dwoc Iya chon
cho nhiém vu nay la cac thuét toan phan tich su dung wavelets Daubechies va mang no-ron MLP.
Cac két qua cho thdy higu qua cta phuong phap dé xuat.

Tir khéa: Vi tri su co, M6 hinh dwong ddy truyén tdi, bai todn nguoc, su co ngan mach, phan tich

Wavelet
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