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SUMMARY 
We propose a new algorithm to obtain a reduced model with pole retention. The main idea is that 

instead of transforming A into diagonal matrix as in modal truncation technique, we transform A 

into upper-triangle matrix. The H∞-norm error bound of this algorithm is given. The choice of pole 

retention will be discussed to get reduced model having minimal H∞-norm error bound. 
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INTRODUCTION
*
 

Modal approximation is simple and effective 

technique in model reduction. This technique 

retains a part of the poles of original system. 

The reduced model therefore retains some 

physical interpretations of the original one, 

such as some vibration modes. Modal 

approximation technique also provides an 

error bound formula, which is useful to give 

the first estimation of how many state or pole 

need to be discasted. 

Modal approximation techniqueis based on 

selecting the poles which are important for 

model reduction’s purposes. There are two 

ways to select these poles. The first one can 

be classified as “top-down” methods, in 

which we search every poles and then select 

the important ones. Modal truncation method, 

which is discussed in Section 2, belongs to 

this class. The second one can be classified as 

“bottom-up” methods, in which we search 

pole one-by-one and then compare the new 

pole we found to the set of poles found 

before. If the new pole is better than others 

then we select, otherwise we discaste. Some 

numerical methods developed recently in 

[7,8] belong to this class. 

The aim of this paper is to improve modal 

truncation method. The idea of truncation’ 

can be divided into two steps: first, 

                                                 
*
 Tel: 0912 347222, Email: daohuydu@tnut.du.vn 

transforming original system to equivalent 

system by an onsigular transformation in the 

statespace, and second, deleting some rows 

and columns to get a reduced system. In 

modal truncation method, matrix A is 

transformed into diagonal form. Our 

improvement idea isasfollows. In stead of 

transforming A into diagonal form, we 

transform A into upper-triangle form by 

Schur decomposition. The advantage of Schur 

decomposition is that it is relizable and 

reduce computational cost. 

The structure of this paper is as follows. 

Modal truncation method will be reviewed in 

Section 2. A new realization, which is called 

triangle realization, will be presented in 

Section 3. In Section 4, we discuss algorithm 

to get reduced-order model based on new 

realization and errorbound. In Section 5, 

numerical example will be presented. Finally, 

conclusions will be given in Section 6. 

REVIEW OF MODAL TRUNCATION 

METHOD 

Consider a linear time-invariant system 

represented by 

x Ax Bu

y Cx Du

 

 
                                (1) 

where:  

,  ,  ,  ,  ,  ,  n p q nxn nxp qxn qxpx R u R y R A R B R C R D R        

Here, we assume that system (1) takes values 

in C instead of in R due to simplicity. The 

transfer function of system (1) is given by  
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Mục tiêu của bài toán giảm bậc mô hình là 

tìm ra mô hình mô tả bởi hệ các phương trình:  
-1( ) :  (  - )G s C sI A B    

Assume that the transfer function G(s) of 

system is asymptotically stable and in 

minimal realization. It is always possible to 

perform a state-space transformation 

   1

mod   x t T x t ,

   1 1

mod mod mod, ,  , ,A B C T AT T B CT  , 

such that Amod  is in diagonal form 

1

mod

0

0 n

A





 
 


 
  

,

1

mod

n

B

B

B

 
 


 
  

,  

 mod 1 nC C C                    (2) 

where, for simplicity, we assume that each of 

the eigenvalues λi of A has a simple Jordan 

structure. The realization above is called 

diagonal realization. The nice thing of this 

realization is that transfer function G(s) can 

be factorized as the sum of simple transfer 

function. 

1 2( )  ( ) ( ) ··· ( ),nG s G s G s G s             (3) 

where    
1

 :  ,    1...i i i iG s C s B i n


     

are simple transfer functions. The H∞ norm of 

G(s) can be estimated via those of Gi(s), i = 

1...n, as follows. 

2

1 1

( ) ( )
Re

n n
i i

i

i i i

C B
G s G s

  
 

        (4) 

where ax2
( )i i m i iC B C B    

The right hand side of (4) tell us that each 

pole contribute a term 2

Re

i i

i

C B


to the H∞-

norm of G(s). In many control purposes, the 

poles contribute much maybe more important 

than the pole Zpoles. 

Definition 1 [7] For given G(s) in diagonal 

realization (2), the pole λi of G(s) is called 

dominant if its corresponding term 

2ˆ
Re

i i

i

i

C B
R


  is relatively large compared to 

others ˆ ,jR j i . The term ˆ
iR  is called the 

dominance index of pole λi. 

Now we turn to modal truncation technique. 

The objective of modal truncation is to divide 

the set of eigenvalues of A, i.e. the poles of 

G(s), into two sets: one to be discarded and 

the other to be kept in the reduced-order 

system. Suppose that we want to keep r 

eigenvalues of A in the set Λr ={λi1,...,λir}, 

then the reduced-order system obtained via 

the modal truncation is  
-1

d ( )  ( )  (  - )
i r i r

re i i i iG s G s C s B
 


 

    

The H∞-norm error bound in modal truncation 

technique is given by (see, e.g. [8]). 

2
d

ˆ( ) ( )   
Re

i r i r

i i

re i

i

C B
G s G s R

 
 

     

(5) 

In order to get small H∞-norm error bound, 

we should discard the poles having their 

dominance index ˆ
iR  small, or keep the poles 

having their dominance index large. We 

summarize modal truncation technique as 

follows. 

Algorithm 1 (Modal truncation technique) 

Assume that the linear time-invariant system 

(1) is asymptotically stable and in a minimal 

representation (A,B,C). 

Step 1: Use transformation T to obtain 

(Amod,Bmod,Cmod) in diagonal realization (2). 

Step 2: For each pole λi, i = 1...n, compute its 

dominance index ˆ
iR . Then, arrange them in 

decreasing order 

1 1

ˆ ˆ ˆ ˆ··· ···
r r ni i i iR R R R


     . 

Step 3: Select r dominant poles to be retained 

in reduced order system: Λr = {λi1,...,λir}. 

The reduced-order system is given as follows 
-1

d ( )  ( )  (  - )
i r i r

re i i i iG s G s C s B
 


 

   . 

TRIANGLE REALIZATION 

The main purpose of this section is to obtain a 

realization in which A has triangle form. 

However, this realization should have 

properties similar to diagonal realization in 

some senses: (i) transfer function G(s) can be 
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factorized similar to (3); (ii) dominant pole is 

defined similar to Definition 1; and (iii) the 

error bound formula is similar to (5). We 

propose the following algorithm to obtain this 

realization. 

Algorithm 2 (Triangle realization) 

Assume that the linear time-invariant system 

(1) is asymptotically stable and in a minimal 

representation (A,B,C). 

Input:   n n n m p n.A,B,C C C C      . 

Step 1: Compute observability Gramian Q 

from Lyapunov equation 

  0A Q QA C C     . 

Step 2: Compute Cholesky factorization 

  Q R R . 

Step 3: Compute Schur decomposition of 
1 1RAR :  RAR   U U    , where U is 

unitary matrix and ∆ is upper triangle matrix. 

Step 4: Compute nonsingular transformation 
1T  R U .  

Step 5: Compute    1 1 , , , , .A B C T AT T B CT    

Output: An equivalent system with 

realization   , ,A B C  . 

Definition 2 The output realization   , ,A B C  

in Algorithm 2 is said to be triangle 

realization. 

The triangle realization   , ,A B C  has many 

nice properties, which will be investigated in 

this section. The following lemma will 

explain why  A  is triangle matrix. It also 

investigates the controllability and 

observability Gramians of this realization. For 

the role of controllability and observability 

Gramians in model reduction, especially in 

balanced truncation, we refer the reader to 

[2]. 

Lemma 3 The triangle realization   , ,A B C  

in Algorithm 2 has the following properties: 

(a) The matrix  A is upper triangle matrix.  

(b) The observability Gramian  Q  is 

identity matrix.  

(c) The controllability Gramian P  can be 

factorized as
2  P W W  , where W is 

unitary matrix, and 

 2 2

1  ,...,  ndiag    is diagonal matrix 

whose diagonal entries are the square of the 

Hankel singular values of the system. 

PROOF. First, we verify that Ã is in upper 

triangle form. In deed, 

 1 1A T AT (U R)A R U U U U U            , 

which is upper triangle matrix. 

Next, we prove that the new observability 

Gramian  Q  is identity matrix. In deed, 

* * - -1

* - * -1 *

 ( ) ( )

        ( )( )( ) .

Q T QT U R Q R U

U R R R R U U U I





  

 
 

The new controllability Gramian P  is 

-1 - * * - * *( ) ( )P T PT U R P R U U RPR U   

where P is the controllability Gramian in 

realization (A,B,C). Take the singular value 

decomposition of RPR* as RPR* = V*Σ
2
V, 

where V is unitary matrix. Now P  can be 

rewrite as follows  

2 2 P U V V U W W      , 

where W := V U is unitary matrix. 

Remark 4: We will show how to transform 

triangle realization to balanced realization. 

Assume that   , ,A B C  is in triangle 

realization, which have controllability 

Gramians 
2P W W  and and 

observability GramiansQ I , as shown in 

Lemma 3. We use the transformation 
1/2:S W    to obtain an equivalent 

balanced realization  1 1, ,S AS S B CS 
. 

Indeed, the controllability and observability 

Gramians of realization 

 1 1, ,S AS S B CS 
respectively are: 

1

1/2 2 1/2

1/2 1/2

     ( )( )( ) ;  

,

bal

bal

P S PS

W W W W

Q S QS WW

 

    

 



     

     

 which implies that  1 1, ,S AS S B CS 
 is 

balanced realization. 



Đào Huy Du và Đtg Tạp chí KHOA HỌC & CÔNG NGHỆ  139(09): 237 - 244 

 

 
240 

Factorize G(s) as the sum of two transfer 

functions 

In this subsection, we investigate that how 

G(s) can be factorized as the sum of two 

simpler transfer functions using triangle 

realization   , ,A B C . By partitioning 

,  ,  ,  ,   A B C P Q  into 2×2 block matrices with 

appropriate dimensions, with the note that in 

general case P  is not in diagonal form, we 

can rewrite two Lyapunov equations 

0AP PA BB     and 0A Q QA C C     

as follows. 

11

11 11

11 12 11 1211 12

22 2222 12 22

1 1 1 2

2 1 2 2

0

0

0

AP P P PA A

P P P PA A A

B B B B

B B B B



   

 

 

     
      

            

 
  
 

 

11 11

12 22

1 1

12

22

1 2

2 1 2 2

0 0 0

0 0 0

0

A A AI I

I IA A A

C C C C

C C C C



 

 

 

      
      

         

 
  
  

 

These are equivalent to the following 

equations 

11 11 12 12 11 11 12 12 1 1 0A P A P P A P A B B        ,   (6) 

11 12 12 22 12 22 1 2 0A P A P P A B B      ,               (7) 

22 22 22 22 2 2 0A P P A B B    ,               (8) 

11 11 1 1 0A A C C    ,                (9) 

12 1 2 0A C C  ,              (10) 

22 22 2 2 0A A C C    ,              (11) 

Let 
1

1 11 1( ) : ( )H s C sI A B   and 

1

2 22 2( ) : ( )K s C sI A B   respectively be the 

trasfer functions of two subsystems. The 

following lemma will show how transfer 

function G(s) can be factorized as the sum of 

H(s) and K(s). 

Lemma 5 With notations given in this 

subsection we get that 

       G s H s V s K s  ,  

where    
1

1 11 1:  V s I C sI A C


   .  

Moreover, V(s) has property that 

   V s V s I    . 

Factorize G(s) as the sum of n transfer 

functions 

Assume that in triangle realization   , ,A B C  

has the following form 

1

0 n

A





  
 

 
 
  

,

1

n

B

B

B

 
 

  
 
 

,  

1 nC C C                     (12) 

Set 
1( ) : ( ) , 1...i i i iG s C s B i n     and 

1

1( ) : ( ) , 1...i i iV s I C s C i n      . Then 

we get  the following lemma. 

Lemma 6 With notations given in this 

subsection we get that 

1 1 2 1 2 3

1 2 1

( ) ( ) ( ) ( ) ( ) ( ) ( )

           ( ) ( ) ( ) ( )n n

G s G s V s G s V s V s G s

V s V s V s G s

  

 

(13) 

Moreover, Vi(s) has property that 

    , 1... 1i iV s V s I i n


    . 

Remark 7 In the right hand side of (13) the 

first term G1(s) has only one pole λ1, the 

second term V1(s)G2(s) has two poles λ1,λ2, 

and so on, the last term V1(s)...Vn−1(s)Gn(s) 

has n poles λ1,...,λn. Compare to (3), each 

term in the right hand side of (3) has only one 

pole λi. 

Dominant pole in triangle realization 

In this subsection we will show how to 

determine dominant pole from triangle 

realization. Definition 1 is not used in this 

case since it only aplly for diagonal 

realization. Therefore we need a new 

definiton of dominant pole in triangle 

realization. 

To make the definition of dominant pole, we 

use the view point that dominant poles 

contribute much to the H∞ norm of G(s) (see 

also the discussion before Definition 1). 

Therefore we need to estimate the H∞-norm of 

G(s) before giving the definition. 

Lemma 8 Assume that G(s) is in triangle 

realization (12) and notations are given as in 

Lemma 6. Then 
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1 2

1 1 2 2
2 2 2

1 2

( ) ( ) ( ) ( )

                 =
Re Re Re

n

n n

n

G s G s G s G s

C B C B C B

  

      
   

  

(14) 

The right hand side in formula (14) tell us that 

each pole contribute a term 2

Re

i i

i

C B


 to the H∞-

norm of G(s). This leads to the following 

definition of dominant pole in triangle 

realization. 

Definition 9 For given G(s) in triangle 

realization (2), thepole λi of G(s) is called 

dominant if its corresponding term 

2:
Re

i i

i

i

C B
R


 is relatively large compared to 

others ,  jR j i . The term
iR  is called the 

dominance index of pole λi. 

Remark 10 The dominant poles in Definition 

9 and Definition 1 depend on different 

realizations. However, they share the same 

meaning that they are the poles having the 

most contribution to the H∞-norm of G(s). It is 

still an open question that the dominant poles 

in two definitions are the same or not. This 

question is beyond the scope of this paper and 

should be considered independently in other 

research. See [1] for more dicussion of 

dominant poles. 

TRIANGLE TRUNCATION TECHNIQUE 

Assume that G(s) is in triangle realization 

(12), which is as follows. 

1

0 n

A





  
 

 
 
  

,

1

n

B

B

B

 
 

  
 
 

,  

1 nC C C    .  

Recall from Lemma 6 that 

1 1 2 1 2 3

1 2 1

( ) ( ) ( ) ( ) ( ) ( ) ( )

           ( ) ( ) ( ) ( )n n

G s G s V s G s V s V s G s

V s V s V s G s

  

 

The terms in the right hand side of above 

formula increase in McMillan degree, that 

means the first term G1(s) has McMillan 

degree 1, the second term V1(s)G2(s) has 

McMillan degree 2, and so on, the last term 

V1(s)...Vn−1(s)Gn(s) has McMillan degree n. If 

we want to make reduced system with 

McMillan degree r, r < n, we should take the 

first r terms as follows. 

1 1 2

1 1

( ) ( ) ( ) ( )

           ( ) ( ) ( )

red

r r

G s G s V s G s

V s V s G s

  

 
        (17) 

Is that the reduced system Gred(s) has 

McMillan degree r? The answer will be given 

in the following theorem. 

Theorem 11 The reduced system Gred(s) in 

(17) has the following properties: 

(a) Gred(s) has triangle realization 

  , ,red red redA B C ,  where   , ,red red redA B C  are 

received by truncating from   , ,A B C  the last 

n−r rows and columns, i.e., 

1

0

red

r

A





  
 

 
 
  

,

1

red

r

B

B

B

 
 

  
 
 

,  

1red rC C C    . 

(b) The H∞-norm of Gred(s) can be estimated 

as follows. 

1 2

1 1 2 2
2 2 2

1 2

( ) ( ) ( ) ( )

                 =
Re Re Re

red r

r r

r

G s G s G s G s

C B C B C B

  

      
   

  

(19) 

(c) The H∞-norm of G(s)−Gred(s) can be 

estimated as follows. 

1

1 1
2 2

1

( ) ( ) ( ) ( )

                                =
Re Re

red r n

r r n n

r n

G s G s G s G s

C B C B

 

  
  

 



   

 

 

(20) 

By error bound formula (20), we should 

choose the reduced system Gred(s) having 

dominant poles, i.e., poles having their 

dominance index large. To do that we need to 

reorder the position of poles on the diagonal 

of A , as shown in the following algorithm 

Algorithm 3 (Triangle truncation technique) 

Input: Triangle realization   , ,A B C  of G(s), 

which is the output of Algorithm 2. 
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Step 1: For each pole λi, i = 1...n, compute its 

dominance index 2:
Re

i i

i

i

C B
R


 . Then, 

arrange them in de-creasing order 

1 1r r ni i i iR R R R


     . 

Step 2: Select r dominant poles to be retained 

in reduced order system: Λr ={λi1,...,λir}. 

Step 3: Reorder the eigenvalue in the 

diagonal of A  by unitary matrix V such that 

the r chosen poles {λi1,...,λir} lie on the top of 

diagonal and the rest lie on the bottom of 

diagonal. 

1

1

r

r

n

i

i

i

i

V AV













     
 

    
   
 

  
 

 
 
 

 

(Comment: Algorithms for reordering 
eigenvalues in Schur decomposition are 
referred to [3,5]. It can be done, for example, 
by MATLAB function ordschur.) 

Step 4: Compute  ˆ ˆˆ , , ( , , )A B C V AV V B CV   

Step 5: Truncate the n − r last rows and 

columns of  ˆ ˆˆ , ,A B C  to get 

1

ˆ

0
r

i

red

i

A





  
 

  
 
 

,

1
ˆ

ˆ

ˆ

red

r

B

B

B

 
 

  
 
 

,  

1
ˆ ˆ ˆ

red rC C C 
 

.                          (21) 

Output: A reduced system Gred(s) with 

realization  ˆ ˆˆ , ,red red redA B C . 

NUMERICAL EXAMPLE 

We test the triangle truncation technique for 
the following system with an eighth-order 
model of a flexible structure [10]. Other tests 
for this system can be found in [4, Sec. 9.6]. 
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2 2
1

( )
2

i
i

i i i i

G s k
s s



  


 

  

where 

i i  
i  ki 

1 0.56806689746895 0.00096819582773 0.01651378989774 

2 3.94093897440699 0.00100229920475 0.00257034576009 

3 10.58229653714164 0.00100167293203 0.00002188016252 

4 16.19234386986640 0.01000472824082 0.00027927762861 

The poles and their dominant indecies 2:
Re

i i

i

i

C B
R


 , i =1 ,...,8 in Definition 9 are given as 

follows. 

i i  
iR  Ordering by iR  

1 −0.1620+16.1915i 0.0140 #5 

2 −0.1620−16.1915i 0.0140 #6 

3 −0.0040+3.9409i 1.2822 #3 

4 −0.0040−3.9409i 1.2822 #4 

5 −0.0006+0.5681i 8.5281 #1 

6 −0.0006−0.5681i 8.5281 #2 

7 −0.0106+10.5823i 0.0109 #7 

8 −0.0106−10.5823i 0.0109 #8 

If four poles are eliminated, we should eliminate poles λ1, λ2, λ7, λ8 to obtain a reduced model as 

-0.0040 -3.9449 -0.0029 -0.0029

3.9370 -0.0040 -0.0029 -0.0029ˆ
0 0 -0.0006 -0.5686

0 0 0.5675 -0.0006 

redA

 
 
 
 
 
 

-0.0570 

0.0570 
ˆ

-0.1415 

0.1413

redB

 
 
 
 
 
 

,   
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 ˆ -0.0889 -0.0889 -0.033 -0.033redC 

Figure 1 shows the full-order model, the 

fourth-order reduced model and the error of 

two models. Two high frequency modes are 

deleted, corresponding to λ1, λ2 and λ7, λ8. 

 
Fig. 1. Model reduction by triangle truncation 

technique: full-order model (solid), reduced model 

(dash-dot) and their error (dashed). 

CONCLUSIONS 

Different from modal truncation or balanced 

truncation techniques, where eigenvalue 

decomposition or singular value 

decomposition are used, the algorithms 

presented in this paper use only Schur 

decomposition. Although the algorithms may 

not success for every system, this is the first 

attemp for triangularizing matrix A. The main 

contribution of this paper is focused on 

theoritical aspect of this triangularization 

approach. 

It should be noted that there are still some 

open questions to be answered. The first 

question involving about dominant poles are 

described in Remark 10. The second question 

is about contructing similar algorithms for 

system (1) whose (A,B,C) are real matrices. In 

this case, the real Schur form or Hessenberg 

form will be used. These questions will be 

answers in our other researchs. 
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TÓM TẮT 

GIẢM BẬC MÔ HÌNH THEO SCHUR  

VÀ ĐÁNH GIÁ SAI SỐ THEO CHUẨN H∞ 
 

Đào Huy Du
1*

, Hà Bình Minh
2
 

1Trường Đại học Kỹ thuật Công nghiệp – ĐH Thái nguyên  
2Trường Đại học Bách Khoa Hà Nội 

 

Chúng tôi đề xuất một thuật toán mới cho mô hình giảm bậc mà vẫn bảo toàn điểm cực. Ý tưởng là 

đưa ma trận trạng thái về dạng tam giác như trong phương pháp model truncation, chuyển đổi ma 

trận trạng thái A có dạng tam giác trên. Trong bài báo này, tác giả sử dụng chuẩn để đánh giá sai 

số. Việc lựa chọn bảo toàn điểm cực bị ràng buộc dựa trên sai số tối thiểu. 

Từ khóa: bảo toàn điểm cực, chuẩn sai số H∞ , ma trận tam giác 
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