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MODEL REDUCTION IN SCHUR BASIS WITH POLE RETENTION

AND H.-NORM ERROR BOUND

SUMMARY
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We propose a new algorithm to obtain a reduced model with pole retention. The main idea is that
instead of transforming A into diagonal matrix as in modal truncation technique, we transform A
into upper-triangle matrix. The H,-norm error bound of this algorithm is given. The choice of pole
retention will be discussed to get reduced model having minimal H..-norm error bound.
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INTRODUCTION

Modal approximation is simple and effective
technique in model reduction. This technique
retains a part of the poles of original system.
The reduced model therefore retains some
physical interpretations of the original one,
such as some vibration modes. Modal
approximation technique also provides an
error bound formula, which is useful to give
the first estimation of how many state or pole
need to be discasted.

Modal approximation techniqueis based on
selecting the poles which are important for
model reduction’s purposes. There are two
ways to select these poles. The first one can
be classified as “top-down” methods, in
which we search every poles and then select
the important ones. Modal truncation method,
which is discussed in Section 2, belongs to
this class. The second one can be classified as
“bottom-up” methods, in which we search
pole one-by-one and then compare the new
pole we found to the set of poles found
before. If the new pole is better than others
then we select, otherwise we discaste. Some
numerical methods developed recently in
[7,8] belong to this class.

The aim of this paper is to improve modal
truncation method. The idea of truncation’
can be divided into two steps: first,
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transforming original system to equivalent
system by an onsigular transformation in the
statespace, and second, deleting some rows
and columns to get a reduced system. In
modal truncation method, matrix A is
transformed into diagonal form. Our
improvement idea isasfollows. In stead of
transforming A into diagonal form, we
transform A into upper-triangle form by
Schur decomposition. The advantage of Schur
decomposition is that it is relizable and
reduce computational cost.

The structure of this paper is as follows.
Modal truncation method will be reviewed in
Section 2. A new realization, which is called
triangle realization, will be presented in
Section 3. In Section 4, we discuss algorithm
to get reduced-order model based on new
realization and errorbound. In Section 5,
numerical example will be presented. Finally,
conclusions will be given in Section 6.
REVIEW OF MODAL TRUNCATION
METHOD

Consider a linear time-invariant system
represented by
X = Ax+ Bu

(1)
y =Cx+Du
where:

XeR, UeR, yeR, AeR,,, BeR,,, CeR,, DeR,

Here, we assume that system (1) takes values
in C instead of in R due to simplicity. The
transfer function of system (1) is given by

g’
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Muyc tiéu cua bai toan giam bac mé hinh Ia
tim ra m6 hinh md ta béi hé cac phuong trinh:
G(s) := C(sl -A)'B

Assume that the transfer function G(s) of
system is asymptotically stable and in
minimal realization. It is always possible to
perform a  state-space  transformation

Xroa (1) = T7X(1),

(Aﬂod ! Bmod ' Cmod ) = (T_lAT,T_lB, CT) ’
such that Amod is in diagonal form

4 0 B,
Aﬂod = - . ! Bmod = !
0 A, B,
Cmod = [Cl e Cn ] (2)

where, for simplicity, we assume that each of
the eigenvalues Ai of A has a simple Jordan
structure. The realization above is called
diagonal realization. The nice thing of this
realization is that transfer function G(s) can
be factorized as the sum of simple transfer
function.

G(s) = G,(5)+G,(s)+++G,(s), (3

where G,(s) = C,(s—4) B, i=1.n

are simple transfer functions. The H,, norm of
G(s) can be estimated via those of Gi(s), i =
1...n, as follows.

oo, <3leol, -5k @

where ”CI Bi ”2 = Omax (C| Bi)
The right hand side of (4) tell us that each

pole contribute a term ”| ' '”|2 to the H,-
Re A,

norm of G(s). In many control purposes, the
poles contribute much maybe more important
than the pole Zpoles.

Definition 1 [7] For given G(s) in diagonal
realization (2), the pole Ai of G(s) is called
dominant if its corresponding term

- _|cl,

o= is relatively large compared to
i |Rei,| y larg p
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The term Iii is called the

dominance index of pole Ai.
Now we turn to modal truncation technique.
The objective of modal truncation is to divide
the set of eigenvalues of A, i.e. the poles of
G(s), into two sets: one to be discarded and
the other to be kept in the reduced-order
system. Suppose that we want to keep r
eigenvalues of A in the set A; ={Ai,...,Air}
then the reduced-order system obtained via
the modal truncation is
Gu(s)= . G(s)= > C(s-4)'B

Aeh, Aieh,
The H..-norm error bound in modal truncation
technique is given by (see, e.g. [8]).

-2 R

CB
”G (S) N Gred (S)”Hm < E ” ”
()

& Red| &
In order to get small Hoo-norm error bound,
we should discard the poles having their

dominance index F\A’i small, or keep the poles

having their dominance index large. We
summarize modal truncation technique as
follows.

Algorithm 1 (Modal truncation technique)
Assume that the linear time-invariant system
(1) is asymptotically stable and in a minimal
representation (A,B,C).

Step 1. Use transformation T to obtain
(Amod, BmodCmod) N diagonal realization (2).
Step 2: For each pole A, i = 1...n, compute its

dominance index Iii. Then, arrange them in
decreasing order

R >>R >R >>R.

Step 3: Select r dominant poles to be retained

in reduced order system: Ar = {Ail,...Air}.
The reduced-order system is given as follows

Gred(s) Z G(S)_ Z C(S ﬂ’) B
e,

TRIANGLE REALIZATION

The main purpose of this section is to obtain a
realization in which A has triangle form.
However, this realization should have
properties similar to diagonal realization in
some senses: (i) transfer function G(s) can be

others Rj,j;ti.
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factorized similar to (3); (ii) dominant pole is
defined similar to Definition 1; and (iii) the
error bound formula is similar to (5). We
propose the following algorithm to obtain this
realization.

Algorithm 2 (Triangle realization)

Assume that the linear time-invariant system
(1) is asymptotically stable and in a minimal
representation (A,B,C).

Input: (A,B,C)eC™ xC™"xCP™ .

Step 1: Compute observability Gramian Q
from Lyapunov equation
A*xQ+QA+C=*C = 0.

Step 2: Compute Cholesky factorization
Q = RR.

Step 3: Compute Schur decomposition of
RAR™: RAR™ = UAU*, where U is
unitary matrix and A is upper triangle matrix.

Step 4: Compute nonsingular transformation

T =R'U.

Step 5: Compute ( A,B,C)=(T*AT,TB,CT).
Output: An equivalent system with
realization (A, é,é) :

Definition 2 The output realization (A,é,é)
in Algorithm 2 is said to be triangle
realization.

The triangle realization (A,B,é) has many
nice properties, which will be investigated in
this section. The following lemma will

explain why A is triangle matrix. It also
investigates  the  controllability  and
observability Gramians of this realization. For
the role of controllability and observability
Gramians in model reduction, especially in
balanced truncation, we refer the reader to

2]
I[_gmma 3 The triangle realization (A,E,C)
in Algorithm 2 has the following properties:
(a) The matrix Ais upper triangle matrix.
(b) The observability Gramian (j is
identity matrix.
(c) The controllability Gramian P can be

factorized asP = W'SAW , where W is
unitary matrix, and

¥ = diag (of,...,of) is diagonal matrix

whose diagonal entries are the square of the
Hankel singular values of the system.

PROOF. First, we verify that A is in upper
triangle form. In deed,

A=TAT=(U'R)A(R'U)=U"UAU'U=A ,
which is upper triangle matrix.

Next, we prove that the new observability
Gramian Q is identity matrix. In deed,

Q=T'QT =(U'R")Q(R™)=
(U*R'*)(R*R)(R'lU) =U'U =1.
The new controllability Gramian P is
P=T'PT" = (U*R)P(R*U ) =U'RPRU
where P is the controllability Gramian in

realization (A,B,C). Take the singular value
decomposition of RPR* as RPR* = VTV,

where V is unitary matrix. Now P can be
rewrite as follows

P=UV'ZV U=W"ZW,
where W :=V U is unitary matrix.

Remark 4: We will show how to transform
triangle realization to balanced realization.
Assume that (A,é,é) is in triangle

realization, which have controllability
Gramians P =W"XAW and and

observability GramiansQ~: |, as shown in
Lemma 3. We use the transformation

S:=W'3"” to obtain an equivalent
balanced realization (S’lAS,S’lB,CS).

Indeed, the controllability and observability
Gramians of realization

(S’lAS, S'B, CS) respectively are:
Pa=S"PS™

— (VAW )W W)W E ) = 3
Q,, =S'QS =" WW'E"2 =73,
which implies that (SflAS, S’lB,CS) is

balanced realization.
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Factorize G(s) as the sum of two transfer
functions

In this subsection, we investigate that how
G(s) can be factorized as the sum of two
simpler transfer functions using triangle
realization (A,B,é). By partitioning

A B, C, P, Q into 2x2 block matrices with
appropriate dimensions, with the note that in
general case P is not in diagonal form, we
can rewrite two Lyapunov equations
AP+PA +BB" =0 and A'Q+OQA+CC=0
as follows

Au R Py ~12 A; 0
|51* P ~22 g *2 Agz
B

These are equivalent to the following

equations
AR AR +PA +PA +BB =0, (6)
0,

All 12 + A12 P22 + P].2A22 + B B; (7)
A,P,+P,A,+B,B; =0, (8)
A +A,+C/C =0, 9)
A,+C.C,=0, (10)
A,+A,+C,C,=0, (11)
Let H(s)=C,(sl -A,) "B, and
K(s):=C,(sl —A,,)™B, respectively be the

trasfer functions of two subsystems. The
following lemma will show how transfer
function G(s) can be factorized as the sum of
H(s) and K(s).

Lemma 5 With notations given in this
subsection we get that

G(s)=H(s)+V(s)K(s),
where V (s):= | —él(sl —,5&1)71 C..
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Moreover, V(s) has

V(-s)=V(s)=1.

Factorize G(s) as the sum of n transfer
functions

Assume that in triangle realization (A,é,é)

property  that

has the following form

2 B,
A o= ,B=| i,
0 2, B,
c=[C - C] (12)

Set G/(s):=C(s—A)"B,i=1.n and
Vi(s):=1-C(s—A)"'C/,i=1.n. Then
we get the following lemma.
Lemma 6 With notations given in this
subsection we get that
G(s) = G,(8) +V1(8)G,(8) +Vy(8)V,(5)G4(s)
+--F+V,(S)V,(5) -V, 1 (5)G, (s)
(13)
Moreover, V(s) has property that
Vi(-s) Vi(s)=1,i=1..n-1.
Remark 7 In the right hand side of (13) the
first term Gy(s) has only one pole 11, the
second term Vi(S)Ga(s) has two poles Al
and so on, the last term V,(5)...V,-;(S)Gn(S)
has n poles 14,...,.,. Compare to (3), each
term in the right hand side of (3) has only one
pole 4;.
Dominant pole in triangle realization
In this subsection we will show how to
determine dominant pole from triangle
realization. Definition 1 is not used in this
case since it only aplly for diagonal
realization. Therefore we need a new
definiton of dominant pole in triangle
realization.
To make the definition of dominant pole, we
use the view point that dominant poles
contribute much to the H,, norm of G(s) (see
also the discussion before Definition 1).
Therefore we need to estimate the H..-norm of
G(s) before giving the definition.
Lemma 8 Assume that G(s) is in triangle
realization (12) and notations are given as in
Lemma 6. Then
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[6G),, <[C.6),,, +[C.E,, +--+IG G,
el fes),leal
ReZ| |Re,| Re 4|

(14)
The right hand side in formula (14) tell us that

each pole contribute a term _"Ci B‘”Z to the H..-
Re|

norm of G(s). This leads to the following
definition of dominant pole in triangle
realization.

Definition 9 For given G(s) in triangle
realization (2), thepole A; of G(s) is called
dominant if its corresponding term

R ;:Mis relatively large compared to
' |ReA

othersR,, j=i. The termR s called the

dominance index of pole A;.

Remark 10 The dominant poles in Definition
9 and Definition 1 depend on different
realizations. However, they share the same
meaning that they are the poles having the
most contribution to the H..-norm of G(s). It is
still an open question that the dominant poles
in two definitions are the same or not. This
guestion is beyond the scope of this paper and
should be considered independently in other
research. See [1] for more dicussion of
dominant poles.

TRIANGLE TRUNCATION TECHNIQUE
Assume that G(s) is in triangle realization
(12), which is as follows.

,11 * * |§1
A= o= | B=| !,
0 2, B,

¢=[¢ - ¢

Recall from Lemma 6 that

G(s) = Gy(s) +Vi(S)G,(8) + Vi (S)V,(8)Gs (8)
+-- 4V (S)V,(5) -V, 4 ()G, (5)

The terms in the right hand side of above

formula increase in McMillan degree, that

means the first term G;(S) has McMillan

degree 1, the second term V,(S)G,(s) has
McMillan degree 2, and so on, the last term

V1(S)...V,-1(S)Gn(s) has McMillan degree n. If
we want to make reduced system with
McMillan degree r, r < n, we should take the
first r terms as follows.

Gred (S) = Gl(s) +\/1(5)62 (5) teee
+--+Vi(8) V41 (5)G, ()
Is that the reduced system Gqy(s) has

McMillan degree r? The answer will be given
in the following theorem.

Theorem 11 The reduced system Gyeq(S) in
(17) has the following properties:

(@ Gred(s) has triangle realization
( Ared ’ Bred ’ CN:red ) ! Where ( A’ed ’ Bred ’éred ) are
received by truncating from ( A, é,é) the last

(17

n—r rows and columns, i.e.,

,11 * * B1
Aed = - . * ' Bred = '
0 A B

red

Cuw=[C -~ C]
(b) The H,-norm of G,¢4(s) can be estimated
as follows.
[Ges O, <IC.SM, G2, +--+[G. G,
leal, lesl,  [esl,
|Re4| |Re4,| IRe 4|
(19)

(c) The H.-norm of G(s)—Grq(s) can be
estimated as follows.

IG()=Gres Oy, <IGra (), ++-+[Gy ),

C~r+1§r+1 CNn Bn
= 2 4... 2
|Re 4., |Re 4, |
(20)

By error bound formula (20), we should
choose the reduced system Ge(S) having
dominant poles, i.e., poles having their
dominance index large. To do that we need to
reorder the position of poles on the diagonal
of A, as shown in the following algorithm

Algorithm 3 (Triangle truncation technique)
Input: Triangle realization (A,é,é) of G(s),

which is the output of Algorithm 2.
241



DPao Huy Du va Dtg Tap chi KHOA HQC & CONG NGHE 139(09): 237 - 244

Step 1: For each pole A;, i = 1.~..rl, compute its
|c.&],

IRed |
arrange them in de-creasing order

Step 4: Compute (A, é,é):(\/*AV,V*E,CV)
Step 5: Truncate the n — r last rows and

Then, cate o
columns of ( A, B,C) to get

dominance index R, =

R>->R >R >->R. EA B,
Step 2: Select r dominant poles to be retained A= “oox By =]t
in reduced order system: A, ={A,..., i} 0 ) A
Step 3: Reorder the eigenvalue in the L 'r B,
diagonal of A by unitary matrix V such that 2 TA A
the r chosen poles {Ai,...,Ar} lie on the top of Crea = _Cl Cr} ' (21)
diagonal and the rest lie on the bottom of Output: A reduced system Greg(S) With

diagonal. - A & A
U realization ( AirBred Crea )
* * ® 0k NUMERICAL EXAMPLE
L~ A, ok x % We test the triangle truncation technique for
VAV = A, * the following system with an eighth-order
" N model of a flexible structure [10]. Other tests
A for this system can be found in [4, Sec. 9.6].
L | 4 2
(Comment: Algorithms for reordering G(s) :Zki - @ -
eigenvalues in Schur decomposition are 7 S +2005+w,
referred to [3,5]. It can be done, for example, Where
by MATLAB function ordschur.)
i @ g ki
1] 0.56806689746895 | 0.00096819582773 | 0.01651378989774
2 | 3.94093897440699 | 0.00100229920475 | 0.00257034576009
3 | 10.58229653714164 | 0.00100167293203 | 0.00002188016252
4 | 16.19234386986640 | 0.01000472824082 | 0.00027927762861
o CB|, o |
The poles and their dominant indecies R, := |R i| , 1 =1 ,..,8 in Definition 9 are given as
e 1
follows.
i A R Ordering by R
1 -0.1620+16.1915i 0.0140 #5
2 —0.1620—16.1915i 0.0140 #6
3 —0.0040+3.94091 1.2822 #3
4 —0.0040—3.9409i 1.2822 #4
5 —0.0006+0.56811 8.5281 #1
6 —0.0006—0.5681i 8.5281 #2
7 —0.0106+10.5823i 0.0109 #7
8 —0.0106—10.5823i 0.0109 #8
If four poles are eliminated, we should eliminate poles 1;, 45, 17, Ag to obtain a reduced model as
-0.0040 -3.9449 -0.0029 -0.0029 -0.0570
~ 39370 -0.0040 -0.0029 -0.0029 | . | 0.0570
“ 0 0  -0.0006 -0.5686| "¢ |-0.1415
0 0 0.5675 -0.0006 0.1413
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C., =[-0.0889 -0.0889 -0.033 -0.033]

Figure 1 shows the full-order model, the
fourth-order reduced model and the error of
two models. Two high frequency modes are
deleted, corresponding to 44, 1, and A;, Ag

Bode Diagram

Magnitude (dB)
a
/
\
s
4
e

Original Model
— *— Reduce Model. | |
1 — — — Emor

Phase (deg)

-360
107 10°
Frequency (rad/sec)

Fig. 1. Model reduction by triangle truncation
technique: full-order model (solid), reduced model
(dash-dot) and their error (dashed).

CONCLUSIONS

Different from modal truncation or balanced
truncation techniques, where eigenvalue
decomposition or singular value
decomposition are used, the algorithms
presented in this paper use only Schur
decomposition. Although the algorithms may
not success for every system, this is the first
attemp for triangularizing matrix A. The main
contribution of this paper is focused on
theoritical aspect of this triangularization
approach.

It should be noted that there are still some
open questions to be answered. The first
question involving about dominant poles are
described in Remark 10. The second question

is about contructing similar algorithms for
system (1) whose (A,B,C) are real matrices. In
this case, the real Schur form or Hessenberg
form will be used. These questions will be
answers in our other researchs.
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TOM TAT
GIAM BAC MO HINH THEO SCHUR
VA DPANH GIA SAI SO THEO CHUAN H,,

Pao Huy Du'’, Ha Binh Minh?
Yvwong Pai hoc K3 thudt Cong nghiép — DH Théi nguyén
2Tru'd'ng Bai hoc Bach Khoa Ha Noi

Chung toi dé xuat mot thuat todn méi cho mé hinh giam bac ma van bao toan diém cuc. Y tudng la
dua ma trén trang thai vé dang tam giac nhu trong phuong phap model truncation, chuyén d6i ma
tran trang thai A c6 dang tam giac trén. Trong bai bao nay, tic gia sir dung chudn dé danh gia sai
sb. Viéc lwa chon bao toan diém cuc bi rang budc dua trén sai s6 t6i thiéu.

Tir khéa: bdo toan diém cue, chuan sai s6 H,, , ma trgn tam giac
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