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A b s t r a c t .  I n  th i s  p a p e r  w e p re s e n t  a  g e n e ra liz e d  quasi- 

fo r r e g u la r iz a t io n  p a r a m e te r  in  t h e  B ro w d e r -T ik h o n o v  r  

so lu tio n  o f  a  s y s te m  o f il l-p o se d  e q u a t io n s  in v o lv in g  p o te n  
m a p p in g s  o n  B a n a c h  sp a c e s . A n  e s t im a te  o f  co n v erg en ce  

e s ta b lish e d .

1. I n t r o d u c t io n

th ;
Let E  be a real reflexive Banach space and 

both are assumed to be s tr ic tly  convex. For 
E  and E* are denoted by the symbol ||.|| and (a 
linear and continuous functional x* € E* at the 
a sequence in  E, x n x  means th a t { x „ }  conve: 
means the strong convergence.
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188 Nguyen Buong, Nguyen T hi T hu T huy and Tran T h i Huong

In  addition, we assume tha t E  possesses the ES-property: weak convergence 
and convergence in  norms for any sequence in  E  follow its strong convergence.

Consider the problem of finding a solution for a system of the following 
equations

AW = /i, /i e-E*, ¡ = o, i , . . . ,jv, (l.i)

where N  is a fixed positive integer and Ai is a potential, hemicontiimous
and monotone mapping on E, i.e., V (A i ) =  E  for i — 0 ,1 , . . .  ,N ,  and V(A)  
denotes the domain o f A. Recall tha t a mapping A  o f domain V (A )  C E  into 
E* is called A-inverse-strongly monotone, if f

(A(x) -  A(y), x  — y) >  A||A(x) -  A (y)||2, V x , y  G V(A),

where A is a positive constant.

The examples of inverse-strongly monotone operators in  the Banach space 
setting can see in  [3].

A  is called monotone, if f  A  satisfies the following condition

(A(x) -  A (y ) ,x  -  y) > 0, W x , y e V ( A ) ;

s tric tly  monotone at a point y 6 T>(A), if f  the equality in  the last inequality 
follows x  = y; and potentia l, if f  A(x) = ip'(x), the Gateaux derivative of a 
convex functional <p(x).

Denote by Si the set of solutions for ith  equation in  (1.1). Throughout 
th is paper, we assume tha t S  :=  H ilo  Si ^  0- We are specially interested in 
the situation where the data fi  is not exactly known, i.e., we have only the 
approximations f f  G E*, satisfying

||/i - / / | |  < 5 , ¿ -> 0 , (1.2)

for i =  0 ,1 , . . . ,  N.

I t  is well-known in  [1] tha t each equation in  (1.1), in  general, is ill-posed, 
by th is we mean tha t the solutions do not depend continuously on the data 
fi. Consequently, the system of equations (1.1), in  general, is ill-posed. Many 
practical inverse problems are natura lly  formulated in  such a way and some 
methods are studied for solving (1.1) (see, [4]-[7]). In  2006, to solve (1.1) in 
the case th a t fi  — 0-the null element in  E*, and Ai is a potentia l, hemicontin- 
uous and monotone mapping on E, in [8], Buong presented the regularization



method of Browder-Tikhonov type:

A generalized quasi-residual principle

N

¿=o
Ho =  0 <  H i <  IH + l  <  1, l

wheie A\  is a hemicontinuous and monotone 
normalized dua llity  mapping of E, i.e., U : E  
tion

(U(x) , x)  — ||a:||||i7(x)|| and 

for all x £ E , and a  is a regularization param
selected by the equation p(a) = a~qhp w ith  
are some fixed positive constants. Further, in  
modified for the case, when Ao is a Lipschitz o 
ping and the other A-% is a A;-inverse-strongly
spaces.

M i l  =  11* 11,
eter, whose value a

a
(1 .

ao
iter, whose value ft ==
:) =  a (a0 +  ||®£||) a n i 
9] and [10], method 

:ontinuous and monotone
monotone mapping i:i

For the stated problem, as in [8], we conside:

N

Y atii( M x) -  f t )  +  a u ( x f ^ + ) =  e, 
i=0

Ho =  0 <  H i <  W + i <  1, * 4  ^ 2 , . . .  , N  -  1,

where the in it ia l point x + ^  S. Formulating a 
plement (1.4) we can use an explicit method th  
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for y in some neighbourhood of xo € S, where ^ ( i )  denotes the derivative of 
A q at x £ E, A'0{x)* is the adjoint of A'0(x), r  is some positive constant, and

{ U { x ) - U { y ) , x - y ) > m u \ \ x - y \ \ s, V x , y  e E, s >  2, mu  > 0. (1.8)

'C ond ition  (1.7) is called the tangential cone condition and is w idely used in 
the analysis of regularization methods for solving nonlinear ill-posed inverse 
problems (see [16]).

Note tha t when Ai(x) =  fa for i =  1 , 2 , . . . , N ,  we have p(a) — ||-Ao(a^) — 
/o||. In  addition, i f  q = 0, then we obtain the residual principle, investigated 
in  Chapter 3 of [1] and therein references. In  the case th a t q > 0, (1.6) is 
the generalized residual principle, th a t was firs t proposed in  [11] for linear ill- 
posed operator equations. Then, i t  was developed in  [12] and [13]. Recently, 
for nonlinear ill-posed problems involving mappings of monotone type, i t  was 
studied in  [14, 15], [17]—[20]. So, for the case Ai{x) ^  / ,  w ith  i = 1 , 2 , . . . , iV, 
the principle above is named “generalized quasi-residual one” .

2. M a in  R esults 

First, we have to prove the following lemmas.

Lem m a 2.1. Let E  be a reflexive and strictly convex Banach space with the 
ES-property and strictly convex E*. Let { Ai}fL0 and { f i } ^ 0 be N + l  potential, 
hemicontinuous and monotone mappings on E  and N + l  elements in E* such 
that the set S  of solutions for  (1.1) be nonempty. Then, we have:

(i) The function p(ct), defined in (1.6), is continuous on (ao,+oo), for  
each ao >  0.

(ii) I f  A n  is continuous at x + and

||iM*+)-/& ||> 0 , (2-1)

for all 5 > 0, where / jy  =  /jv , then

lim  p(a)  =  +oo.
a—>+oo

Proof From (1.4) i t  follows

N

Y  o '*1 ( M O  -  f t . 4  -  z) + <*(U(3& - x +) , x i - z ) ^  0, V z e s .
i= 0



A generalized quasi-residual principle

Or,

Y a P i -  Ai(z) +  Ai(z)

+  a{U{xsa - x + ),xsa - z )  =  0, V i

Then, by virtue of (1.2), (2.2) and the monotoji:

(U(Ja - x + ) , J a - z )
¿=0

j \  + f i -  f i , x a -  z)

6 5.

deity of Ai,  we have

A ~  z\-> ^ z £ S.

Therefore,

l l * « - a ; + l|2 - | l a £ - 3 + l

and hence,

o < i k - x + n

i i ^ ^ + i i + ä ^ - X
i=0

<
 ̂ 1=0

/  N 1 \ 2
x+

¿=0 '
+ \  {\\x + - z \\ + d l ^ a ^ )  + 4 I

•¿=0 ¿=0
Now, let a  and ¡3 be any two numbers in (ao, 4 
that

j 2 ^ ( M x sa) -  -
2=0 i=0
-  pU (xsp -  x +) = 0.

Consequently,

a (U (x 5a - x +) - U ( x 6p -  x +), x 5a -  x j)  +  (a

+ J 2  a>li ( M x t ) - M 4 ^
¿=0 i= 0
0.

in regularization
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192 Nguyen Buong, Nguyen Thi Thu Thuy and TVan Thi Huong

The last equality together with the following property of U (see Lemma 1.5.4 
in [!])>

( U ( x ) - U ( y ) , x - y ) > ( \ \ x \ \ - \ \ y \\)2 

for any x, y G E,  implies that

( l l 4 - x + i i - i i 4 - * + i l )2
N

<
a

ao
Xp -  x+\ + E

i= 1

|a w -ptH\  

a  o

So, from the last inequality and (2.4) w ith  a  replaced by a 0 in its right-hand
side, it follows the continuity of ||x^ — rc+ || at any /3 G (ao,+oo). Thus, p{a) 
is continuous on (ao, +oo). Now, again from (1.4), we can write that

N  N

Y afli{ M xi)  ~ M x+)) + aU{xsa -  x+) = Y  aMi(// -  M x+))- 
i= 0 ¿=0

Acting on the last equality by x sa — x + and using the monotonicity of Ai and 
the definition of U, we obtain that

l l 4 - * + l l < E - 5 ^ l l / f - A ( * +)l|.
¿=o

Thus,
lim llx* — a:+ || =  0.

a —>+oo
Clearly, the conclusion of the Lemma is followed from the last equality,

p(a ) >  a1M N 1 1 ^ (4 )  -  A n  -  E  -  f t
i=0

the continuity of A n  at x +, the local boundedness of Ai (see [1], Theorem 
1.3.16), for i =  0 ,1 , . . . ,  N,  and pw  >  pi. □

L em m a 2.2. Let E,  Ai and fi be as in Lemma 2.1. For each p, q, 6 > 0, 
there exists at least a value a  > 0 such that (1.6) holds.

Proof. Clearly, from Lemma 2.1, the function a  —> a 1+9||:r^ — x°|| =  a qp(a)  
is continuous on (ao, +oo) for any «o >  0 and

lim a qp(a ) =  +oo.
a —>~f-oo

On the other hand, from (2.4) it follows that
N  ,  N  ,  1/2

a qp(a)  <  a 9+ 1 ||a:+ — z\\ +  a q6 +  aq ( a5  ^  a w \\x+ — z\\ j
¿=o '  ¿=0 '
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For each 0 <  5 <  1, we can choose a  > 0 such
N  , N

a 9+1||x+ — z\\, a q f aS Y
i= 0 '  i=0

So, a qp(a) < 5P for sufficiently small a. Hence 
a  =  a(^5j such tha t a ^ qp[&{8)) =  5P.

in  r e g u la r iz a tio n  

t h a t

s 1/2
' oßi \\x+ — z\\ j  < 5P / 3.

L e m m a  2 .3 . Let E , A{ and fc be as in L em n
mappings of the system be strictly mor,

lim a(5) — 0.
5-40

Proof. Without any loss of generality, we assume 
mapping at x + with i — 0 ,1 , . . . ,  N  — 1. We shaL 
conclusion is not true. Then, there is a sequenc

1) =  a(5k) —> Co, some positive constant;
2) a k —>• +oo.

that Ai is a strictly ntiohoto
1 prove by supposing th 
e ôk -> 0 as k -> +oo w:

In the case 1), from (1.6), is follows that C{
Next, replacing 8, a  and a: in (1.4), respectively, 
k —> -t-oo, we obtain that

by 5k, a k and x^ , an<fl

N
^ O S ‘( A ( x + ) - A i(z) ) i  
i=0

T i l  4-  1Acting on the equality by x + — z  and using t l
0 ,1 , . . . ,  N,  and Cq > 0, we have

(Ai(x+) — A i ( z ) , x + — z) — 0,

Since Ai is strictly monotone at x + for i =  0, 
Therefore, from (2.5) it follows tha t x + 6 Sn - H 
the assumption x + S.

In the case 2), also from (1.6), it follows thjat

Pfek)lim \\x^
k—̂ -f-oo

x+ || =  lim
k—t+oo Oik

Again, replacing 5, a  and x  in (1.4), respectively 
that

N - 1
a t N

i=0 Qk
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Tending k —> +00 in the last inequality and using (2.6), the local boundedness 
of Ai, for i = 0,1, . . . ,  N  - 1 ,  the continuity of A n  at x + with condition (2.1), 
and the fact tha t -» +00 and 5k -> 0, we obtain the inequality +00 < 0, 
that is impossible. This completes the proof. □

L e m m a  2 .4 . Let E , Ai and f i be as in Lemma 2.3. If q">p, tLen
lim 6/ a (S ) =  0. 
<U0

Proof. It is easy to see that 

5
P= [5Pa{5)-q]a{5y-p = p(a(5))a(5)q- p.

W ) .
On the other hand, from (2.4) it follows that

N  ,  N  s

p ( a (< 5 ) )  < a (< 5 ) ||a :+  — z\\ +  5
i= 0 '  i= 0 '

1/2

Therefore, r s y nlim —— =  0.
<5->0 a(o)

The lemma is proved. □

Lem m a 2.5. Let E , Ai and f i  be as in Lemma 2.3. I f  0 <  p < q, then

f t  XUs) = x °-

Proof. It follows from Lemmas 2.3, 2.4 and standard results about convergence 
of the Browder-Tikhonov regularization method for (1.4) (see [8, 20]). □

Lem m a 2.6. Let E , Ai and fi be as in Lemma 2.3 and let 0 <  p < q. Then, 
there are constants Ci, C2 > 0 such that, for sufficiently small 5 > 0, the 
relation

Ci < 5pa~1~q{5) < C2
holds.

Proof. Because of (1.2) and (1.5), we have, for all a  >  0, f f  G E *,

p(a) = a(6) | | 4 ( i ) - * + ll> 

which together with Lemma 2.5 implies that

lim 5pa ~ 1~q{5) = lim a _1((5)p(a!((5))) =  ||xo — x + ll >  0.
5-s-O 5->0

This implies the conclusion of the lemma. □



A generalized quasi-residual principle

Theorem 2.7. Let E, Ai and fo k as in Leijima 2.1 In addition
that the following conditions hold:

(i) the duality mapping U satisfies (1.8);
(ii) j4o is Frechet differentiable at some neighbourhood of S  with

(iii) there exists an element ui G E  such thai

A q (io )*w  - U { x q -  x + j, and
(iv) the parameter a  =  a(tf) is chosen by (1 6) with q >  p.

Then, we have

- s o i l  = 0 (8*), ?? =  Y ^ m in {(

Proof. Erom (1.4), (1.8), the monotonicity of 
theorem it follows

m u\\x5a -  x0||s <  (U(x6a -  x +) -  U(xo -  x

1 N 

a  n-n'2=0
- ^ ( U i x o - x ^ ^ Q - x i  

5 N 

t=0

-  - * o i i + illa  i—1¿=o

in regularization

, am

M i

3 ~ p ) / ( s ~ l ) ;  pfJLi/i)}• 

A{ and condition (iiji)

) ,x 5a ~ x o)

>

A'0(x0)(x0 -  x5a))

|A;o(xo)(xo - 4 ) I I -
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On the other hand, from (1.7), we have that 

||i4o(*0) (* 0 -* a ) l l

<  (1 +  r ) p 0( 4 )  -  /o|| <  (1 +  r )  ||ylp|(*

r J L
<  (1 +  t ) x 5a- x +\

N

s  + Y ^ W M O - f t  || + k
i—1

■ N  N

5 Y a>li+ a iixa - ;c+i i + E ^ n ^ )  _ ^ ( xo)ii
■ z=0 i=l

If a  is chosen by (1.6), then ||a ;^^ — xoll < c, a s ufficiently small and 
constant, for sufficiently small <5, and a(S) <  1.
0:^ (6) < a ^1 (¿) and ||Ai(xa^ )  -  ^¿(x0)|| <  C,

< (1 +  r)

:) - / o l l  +  <5

positive
Consequently, we have
a positive constant,

(2 T)

that
because



196 Nguyen Buong, Nguyen T hi T hu  Thuy and T ran T hi Huong

Ai is locally bounded at x q . Therefore, from (2.7) and Lemma 2.G, we obtain 
that

A c k n o w le d g m e n ts :  T h is  research is founded by Vietnamese N a tiona l Foun­
dation of Science and Technology Development.
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m u h i {5) -X0IIs ^  (1 +  -* o ll

+  |H |(1  +  r )  ¿(1 + N ) + a~q(5)5p +  C N a « (6)

< { l + N ) C 2C ; q/(l+qh ^ \ \ x i { s r x 0\ \ + C N C ~ ^ .

Using the implication
a, b, c > 0, p > q, dP < baq + c 

we obtain
114(5) - * 0 II =  0(S*).

The theorem is proved. □
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