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Abstract. In this paper we present a generalized quasi;

for regularization parameter in the Browder-Tikhonoy r

‘solution of a system of ill-posed equations involving poten
mappings on Banach spaces. An estimate of convergence
established.

1. INTRODUCTION

Let E be a real reflexive Banach space and
both are assumed to be strictly convex. For th
E and E* are denoted by the symbol ||.|| and (=
linear and continuous functional z* € E* at the
a sequence in F, z, — = means that {z,} conve
means the strong convergence.
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In addition, we assume that E possesses the ES-property: weak convergence
and convergence in norms for any sequence in E follow its strong convergence.

Consider the problem of finding a solution for a system of the following
equations

A5)=f;, HEE,i=01,..,N, (11)

where N is a fixed positive integer and A; is a potential, hemicontinuous
and monotone mapping on E, ie., D(4;) = E for i = 0,1,...,N, and D(A)
denotes the domain of A. Recall that a mapping A of domain D(A) C F into
E* is called A-inverse-strongly monotone, iff

(A(z) = A(y),z — ) 2 M|A(2) — AW)I?, Vz,y € D(4),

where A is a positive constant.

The examples of inverse-strongly monotone operators in the Banach space
setting can see in [3].

A is called monotone, iff A satisfies the following condition
(A(z) — A(y),z—y) >0, Vaz,yeDA);

strictly monotone at a point y € D(A), iff the equality in the last inequality
follows z = y; and potential, iff A(z) = ¢'(z), the Gateaux derivative of a
convex functional ¢(z).

Denote by S; the set of solutions for ith equation in (1.1). Throughout
this paper, we assume that S := ﬂijio S; # 0. We are specially interested in
the situation where the data f; is not exactly known, i.e., we have only the
approximations f{s € E*, satisfying

Ifi— £ <6, 50, (1.2)

fori=0,1,...,N.

It is well-known in [1] that each equation in (1.1), in general, is ill-posed,
by this we mean that the solutions do not depend continuously on the data
fi. Consequently, the system of equations (1.1), in general, is ill-posed. Many
practical inverse problems are naturally formulated in such a way and some
methods are studied for solving (1.1) (see, [4]-[7]). In 2006, to solve (1.1) in
the case that f; = 0-the null element in E*, and A; is a potential, hemicontin-
uous and monotone mapping on E, in [8], Buong presented the regularization
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method of Browder-Tikhonov type:
N
) atiAf () +al(z) =6,
. (1.3)
1=0
po=0<p; <pir1 <1, 2=12,...,.N -1,
whete A? is a hemicontinuous and monotone approximation for A, U is the
normalized duallity mapping of E, i.e., U : E 4 2E", that satisfies the cond#
tion
(U(z),z) = ||lz[|U(=)] and ||U(=)]| = ||,
for all z € E, and o is a regularization parameter, whose value o = a(h) is
selected by the equation p(a) = a~9h? with p(e) = a(ao + ||z2||) and aq, ¢, p
are some fixed positive constants. Further, in [9] and [10], method (1.3) was
modified for the case, when Ay is a Lipschitz continuous and monotone map-
ping and the other A; is a A;-inverse-strongly monotone mapping in ilberit
spaces. \
For the stated problem, as in [8], we consider the following equation
N
> o*(Ai(z) - f) +oU(z —11) =9,
: (14)
i=0
#0=0<Hi<ﬂi+1<1, 7::1727-"7N_17
where the initial point z* ¢ S. Formulating a|procedure to numerically im-
plement (1.4) we can use an explicit method that are similar (27) and (28) i$

2.
N

Clearly, the mapping A(.) := » ;- ot (As(
a > 0, is hemicontinuous and monotone with D
monotone (see [1], Theorem 1.4.6). So, equa
solution mi, for each o > 0. By the similar arg
if @, 6/ — 0 then z° converges strongly to zg

— ot = mi |_
lzo — ™| min [l

In this paper, we consider a choice @ = a(é) by

pla) = af|zg, — z*|| = 4

where p, g are some positive constants and estim

under the following conditions:

l4o(y) — fo — Ap(zo)*(y — zo)ll < [l Ao(y) — foll,
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for y in some neighbourhood of zy € S, where Ajy(x) denotes the derivative of
Ao at 2 € B, Al(2)* is the adjoint of A)(z),  is some positive constant, and

U)-Uy),s—y)2mylls—y|°, Vs,y€E, s22 my>0 (18)

*Condition (1.7) is called the tangential cone condition and is widely used in
the analysis of regularization methods for solving nonlinear ill-posed inverse
problems (see [16]).

Note that when A;(z) = f; for i = 1,2,..., N, we have p(a) = ||Ao(z) —
fg”. In addition, if ¢ = 0, then we obtain the residual principle, investigated
in Chapter 3 of [1] and therein references. In the case that ¢ > 0, (1.6) is
the generalized residual principle, that was first proposed in [11] for linear ill-
posed operator equations. Then, it was developed in [12] and [13]. Recently,
for nonlinear ill-posed problems involving mappings of monotone type, it was
studied in [14, 15], [17]-[20]. So, for the case A;(z) # f; withi=1,2,...,N,
the principle above is named “generalized quasi-residual one”.

2. MAIN RESULTS

First, we have to prove the following lemmas.

Lemma 2.1. Let E be a reflezive and strictly conver Banach space with the
ES-property and strictly convez E*. Let {A; Yo and {fi}} be N+1 potential,
hemicontinuous and monotone mappings on E and N +1 elements in E* such
that the set S of solutions for (1.1) be nonempty. Then, we have:

(i) The function p(c), defined in (1.6), is continuous on (ag,+o0), for
each ag > 0.
(i) If AN is continuous at zt and

AN (z*) = £l > 0, (2.1)
for all § > 0, where f} = fn, then

Proof. From (1.4) it follows

1Y

N
Za“"(fli(wi) - +a(U@ —at),2l—2)=0, Vz€S.
i=0
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- Or,
N
> o (Ai(zd) — Ai(z) + Ailz) -
=0
+a(U(zd -1t),10 -2) =0, V1

Then, by virtue of (1.2), (2.2) and the monotor
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Now, let o and f be any two numbers in (ayg,
that

<Je-s

S (At Z B (As(a)
=0
—ﬁU(m%—x y=n.
Consequently,
(U(w‘s — 2y — U(eh —a* )y — w‘fs) + (o

—i—ch“z (Ai(z8)— A; (xﬂ) z —xﬁ)+z (ot
i=0
= 0.
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+fi—f'?:xg_z> (22)
I
€S |
nicity of A;, we have
S Veel | | (99
T
N i
1 1 ‘
o Dy
=0 f
|
N (214
i — z|]52§ o o }
1/2
o=at)
+00). From (1.4), we also have
- ) + al (2l — =)
AU (zp — a*), 2 1 @)
—B){Ai(z) — 1}, 2l —zp)
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The last equality together with the following property of U (see Lemma 1.5.4

in [1]),
(Uz) ~U(y),z = y) 2 (=] - llyll)?

for any z, y € E, implies that
)
(||$6 — || - ||z — 2|))?

< |2 x+u+z'“ B0 astal) - £00] S + ).

So, from the last inequality and (2.4) with o replaced by oy in its right-hand
side, it follows the continuity of ||z%, — z*|| at any B € (ag, +00). Thus, p(c)
is continuous on (e, +00). Now, again from (1.4), we can write that

Za"‘ — Ai(z)) + aU(al —zT) = Z aHi(ff - Ai(zt)).

=0

Acting on the last equality by 22, — 2+ and using the monotonicity of 4; and
the definition of U, we obtain that

=8, - =*) < Z - Al
Thus,
lim ||zf, — 2| =0.
a—+00
Clearly, the conclusion of the Lemma is followed from the last equality,
N-1
pla) > e [ Ax(a2) - 7 - Z; o l4ia) - 1),

the continuity of Ay at z*, the local boundedness of A; (see [1], Theorem
1.3.16), for i = 0,1,..., N, and py > u;.

Lemma 2.2. Let E, A; and f; be as in Lemma 2.1. For each p, q, 6 > 0,
there ezists at least a value o > 0 such that (1.6) holds.

Proof. Clearly, from Lemma 2.1, the function o — a!*9||z¢ — || = a%p(a)
is continuous on (ayp,+00) for any ag > 0 and

q
all)r_*{looa pla) = +o0.

On the other hand, from (2.4) it follows that

N 1/2
adp(a) < aq+1|]x —z||+ a6 Za‘“ + af (a(SZa“’Hx - z“) .

=0 =0
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For each 0 < § < 1, we can choose o > 0 such that
N N 1/2
ozt — z||, %) " at, of (a5Zo‘“”x+ " zu> < 82/3.
=0 =0
So, adp(a) < 4P for sufficiently small . Hence, there exists at least a value
= a(é) such that a(d)qp(a(5)> = 9P, E‘fl
|
Lemma 2.3. Let E, A; and f; be as in Lemma 2.1. Moereover, let any N
mappings of the system {A;}N, be strictly monotone at z+. Then,
lim o(8) = 0.
§—0
Proof. Without any loss of generality, we assum¢ that A; is a strictly monotone
mapping at £ with i = 0,1,..., N — 1. We shall prove by supposing| that the
conclusion is not true. Then, there is a sequence 0, — 0 as k — +oo| with | |
1) @, = a(dx) — Cp, some positive constant;|or \
2) @ — +o0. ‘
In the case 1), from (1.6), is follows that C§™ limy_, e ng’; —zt] =0,
Next, replacing 6, & and z in (1.4), respectively, by &, @x and a:%’; , and passing
k — 400, we obtain that 1
N
Y CH(Ai(a™) — Ai(2)) =0, z€S. (215)
i=0
Acting on the equality by z* — 2 and using the monotonicity of A; for i|=
0,1,...,N, and Cy > 0, we have
(Ai(zh) — Ai(2),zr — 2) = 0, =0,1,...,N.

‘Since A; is strictly monotone at zT for i = 0,]1,...,N — 1, 2t € ﬂﬁzngi
Therefore, from (2.5) it follows that z= € Sy. Hence, z+ € S, that contradicts
the assumption zt ¢ S.

In the case 2), also from (1.6), it follows that
- D
: 9 _ ot Tn p(2k) o Ok _ 9
kgr—ﬁm ”xak ” k—i-l—oo ay kBI—II—loo al'}"q 0 ( 0
Again, replacing 6, a and z in (1.4), respectively, by dx, @ and :L’g’; , we obtain
that
= 5 i
i | An n—z = L AR A | B PHE AR
< Ellal ~ 2t = p(ak) =, 5.
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Tending k — +o0 in the last inequality and using (2.6), the local boundedness
of A;, fori=0,1,...,N —1, the continuity of Ay at 21 with condition (2.1),
and the fact that @ — +oo and dx — 0, we obtain the inequality +oco < 0,
that is impossible. This completes the proof. O

Lemma 2.4. Let B, A; and f; be as in Lemma 2.3. If ¢ > p, then
‘ lim 6//(8) = 0.
50

Proof. 1t is easy to see that

5 17 B _ _
{@]  [Pa(6)a(8)"? = p(a(8))a(d)*.

On the other hand, from (2.4) it follows that

N N 1/2
p(a(6)) < a(@)le* — 2|+ k() + (a(a)azam (O)lla* - zu) |
=0

i=0
Therefore,
s 17
lim |—=| =0.
Jl—%[a(é)] :
The lemma is proved. a

Lemma 2.5. Let E, A; and f; be as in Lemma 2.3. If 0 < p < q, then

i T =

Proof. It follows from Lemmas 2.3, 2.4 and standard results about convergence
of the Browder—Tikhonov regularization method for (1.4) (see [8, 20]). O

Lemma 2.6. Let F, A; and f; be as in Lemma 2.3 and let 0 < p < q. Then,
there are constants Cy, Cy > 0 such that, for sufficiently small § > 0, the
relation

C; < 6Pa™179(5) < Cy
holds.
Proof. Because of (1.2) and (1.5), we have, for all & > 0, f{ € E*,
p(@) = a(8)||zds) — = *Il,
which together with Lemma, 2.5 implies that
lim Pa~179(6) = lim a~(8)p(a(9))) = ||lzo — zF|| > 0.
§—0 6—0

This implies the conclusion of the lemma. O
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Theorem 2.7. Let B, A; and fi be as in Lemma 2.3. In addition

that the following conditions hold:
(i) the duality mapping U satisfies (1.8);

(ii) Ao is Fréchet differentiable at some neighbourhood of S with

(iii) there exists an element w € E such that

Ap(zo)'w =U(mo -2

(iv) the parameter o = a(0) is chosen by (1
Then, we have

5 — BI5 1 {

”%(5) — x| =0(8"), n= mmln (

Proof. From (1.4), (1.8), the monotonicity of
theorem it follows

]

myl|zg — zoll* < (U(al ~ z*) = Ulzo — o

+(U(zo — z*)
5 N
<23 il o
s
— 1
< a;a

‘On the other hand, from (1.7), we have that
|45 (o) (o — z3) |

|2 = woll + [lw]

< (0 7)1 Ao(eh)  foll < (-4 7) | ole) — £+ ]

N
<@+ |+ S ad) - Al +el

fi=l

N N
<+ [5 S+ allad, — ot + 3 & Ailad) — Asao)l]-
=0 =1

If « is chosen by (1.6), then Hz‘;(é) —zp|| <e¢ as

constant, for sufficiently small §, and «(d) < 1.
ati(8) < o#1(8) and ||Ai(zas)) — Ai(zo)| < C,

1 N
o Y oi(ff - Ay(zh), o]
-

§
» Z0 — Ty

in regularization

, and
6) with ¢ > p.

g—p)/(s—1); pu/s
A; and condition (iil)
F)) :Ei - :120)
x I0>

)

A (o) (w0 — 23)

| A (o) (z0 — 23]l

. x+u]

ufficiently small and

a positive constant,

) lgswme

s

positive
Consequently, we have
be
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A; 15 locally bounded at zg. Therefore, from (2.7) and Lemma 2.6, we obtain
that

e gy~ anl® £ (14 MO Pab(8) e o]

+ |wll(1 4+ 7)|6(1 + N) + @~ 9(6)6% + CNat(4)

-

Jo L U )T
< (14N)CoCy Y H+D§T |o?, ]|+ CNC, ¥ 655,

Using the implication
a, b,c>0,p>gq d?<bil+c = ap=0(bp/(1’_q)+c)

we obtain
1285y — zoll = O(8").=> aP = O(BP/'P=9 +¢)
The theorem is proved. O
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