A GENERALIZED QUASI-RESIDUAL PRINCIPLE IN REGULARIZATION FOR A SOLUTION OF A FINITE SYSTEM OF ILL-POSED EQUATIONS IN BANACH SPACES

Nguyen Buong ${ }^{1}$, Nguyen Thi Thu Thuy ${ }^{2}$ and Tran Thi Huong ${ }^{3}$
${ }^{1}$ Institute of Information Technology VAST, Hanoi, Vietnam
e-mail: nbuong@ioit.ac.vn
${ }^{2}$ Department of Mathematics, College of Sciences Thainguyen University, Thainguyen, Vietnam e-mail: thuthuy220369@gmail.com
${ }^{3}$ College of Economics and Technology
Thainguyen University, Thainguyen, Vietnam
e-mail: huongk16@gmail.com

Abstract. In this paper we present a generalized quasi-residual principle to select a value for regularization parameter in the Browder-Tikhonov regularization method, for finding a solution of a system of ill-posed equations involving potential, hemicontinuous and monotone mappings on Banach spaces. An estimate of convergence rates for regularized solution is also established.

1. Introduction

Let E be a real reflexive Banach space and E^{*} be its dual space, which both are assumed to be strictly convex. For the sake of simplicity, norms of E and E^{*} are denoted by the symbol $\|\cdot\|$ and $\left\langle x^{*}, x\right\rangle$ denotes the value of the linear and continuous functional $x^{*} \in E^{*}$ at the point $x \in E$. When $\left\{x_{n}\right\}$ is a sequence in $E, x_{n} \rightharpoonup x$ means that $\left\{x_{n}\right\}$ converges weakly to x and $x_{n} \rightarrow x$ means the strong convergence.

[^0]In addition, we assume that E possesses the ES-property: weak convergence and convergence in norms for any sequence in E follow its strong convergence.

Consider the problem of finding a solution for a system of the following equations

$$
\begin{equation*}
A_{i}(x)=f_{i}, \quad f_{i} \in E^{*}, i=0,1, \ldots, N \tag{1.1}
\end{equation*}
$$

where N is a fixed positive integer and A_{i} is a potential, hemicontinuous and monotone mapping on E, i.e., $\mathcal{D}\left(A_{i}\right) \equiv E$ for $i=0,1, \ldots, N$, and $\mathcal{D}(A)$ denotes the domain of A. Recall that a mapping A of domain $\mathcal{D}(A) \subseteq E$ into E^{*} is called λ-inverse-strongly monotone, iff

$$
\langle A(x)-A(y), x-y\rangle \geq \lambda\|A(x)-A(y)\|^{2}, \quad \forall x, y \in \mathcal{D}(A),
$$

where λ is a positive constant.
The examples of inverse-strongly monotone operators in the Banach space setting can see in [3].
A is called monotone, iff A satisfies the following condition

$$
\langle A(x)-A(y), x-y\rangle \geq 0, \quad \forall x, y \in \mathcal{D}(A) ;
$$

strictly monotone at a point $y \in \mathcal{D}(A)$, iff the equality in the last inequality follows $x=y$; and potential, iff $A(x)=\varphi^{\prime}(x)$, the Gâteaux derivative of a convex functional $\varphi(x)$.

Denote by S_{i} the set of solutions for i th equation in (1.1). Throughout this paper, we assume that $S:=\bigcap_{i=0}^{N} S_{i} \neq \emptyset$. We are specially interested in the situation where the data f_{i} is not exactly known, i.e., we have only the approximations $f_{i}^{\delta} \in E^{*}$, satisfying

$$
\begin{equation*}
\left\|f_{i}-f_{i}^{\delta}\right\| \leq \delta, \quad \delta \rightarrow 0 \tag{1.2}
\end{equation*}
$$

for $i=0,1, \ldots, N$.
It is well-known in [1] that each equation in (1.1), in general, is ill-posed, by this we mean that the solutions do not depend continuously on the data f_{i}. Consequently, the system of equations (1.1), in general, is ill-posed. Many practical inverse problems are naturally formulated in such a way and some methods are studied for solving (1.1) (see, [4]-[7]). In 2006, to solve (1.1) in the case that $f_{i}=\theta$-the null element in E^{*}, and A_{i} is a potential, hemicontinuous and monotone mapping on E, in [8], Buong presented the regularization
method of Browder-Tikhonov type:

$$
\begin{align*}
& \sum_{i=0}^{N} \alpha^{\mu_{j}} A_{i}^{h}(x)+\alpha U(x)=\theta, \tag{1.3}\\
& \mu_{0}=0<\mu_{i}<\mu_{i+1}<1, \quad i=1,2, \ldots, N-1,
\end{align*}
$$

whete A_{i}^{h} is a hemicontinuous and monotone approximation for A_{i}, U is the normalized duallity mapping of E, i.e., $U: E \rightarrow 2^{E^{*}}$, that satisfies the condition

$$
\langle U(x), x\rangle=\|x\|\|U(x)\| \quad \text { and } \quad\|U(x)\|=\|x\|
$$

for all $x \in E$, and α is a regularization parameter, whose value $\alpha=\alpha(h)$ is selected by the equation $\tilde{\rho}(\alpha)=\alpha^{-q} h^{p}$ with $\tilde{\rho}(\alpha)=\alpha\left(a_{0}+\left\|x_{\alpha}^{h}\right\|\right)$ and a_{0}, q, p are some fixed positive constants. Further, in [9] and [10], method (1.3) was modified for the case, when A_{0} is a Lipschitz continuous and monotone mapping and the other A_{i} is a λ_{i}-inverse-strongly monotone mapping in Hilbert spaces.

For the stated problem, as in [8], we consider the following equation

$$
\begin{align*}
& \sum_{i=0}^{N} \alpha^{\mu_{i}}\left(A_{i}(x)-f_{i}^{\delta}\right)+\alpha U\left(x-x^{+}\right)=\theta \tag{1.4}\\
& \mu_{0}=0<\mu_{i}<\mu_{i+1}<1, \quad i=1,2, \ldots, N-1,
\end{align*}
$$

where the initial point $x^{+} \notin S$. Formulating a procedure to numerically implement (1.4) we can use an explicit method that are similar (27) and (28) in [2].
Clearly, the mapping $A():.=\sum_{i=0}^{N} \alpha^{\mu_{i}}\left(A_{i}\left(.^{\prime}\right)-f_{i}^{\delta}\right)+\alpha U$, for each fixed $\alpha>0$, is hemicontinuous and monotone with $\mathcal{D}(A)=E$. Hence, A is maximal monotone (see [1], Theorem 1.4.6). So, equation (1.4) possesses a unique solution x_{α}^{δ}, for each $\alpha>0$. By the similar argument, as in [8], we have that if $\alpha, \delta / \alpha \rightarrow 0$ then x_{α}^{δ} converges strongly to $x_{0} \in S$, satisfying

$$
\begin{equation*}
\left\|x_{0}-x^{+}\right\|=\min _{z \in S}\left\|z-x^{+}\right\| \tag{1.5}
\end{equation*}
$$

In this paper, we consider a choice $\bar{\alpha}=\alpha(\delta)$ by using the principle

$$
\begin{equation*}
\rho(\alpha):=\alpha\left\|x_{\alpha}^{\delta}-x^{+}\right\|=\alpha^{-q} \delta^{p}, \tag{1.6}
\end{equation*}
$$

where p, q are some positive constants and estimate convergence rates for $x_{\alpha(\delta)}^{\delta}$ under the following conditions:

$$
\begin{equation*}
\left\|A_{0}(y)-f_{0}-A_{0}^{\prime}\left(x_{0}\right)^{*}\left(y-x_{0}\right)\right\| \leq \tau\left\|A_{0}(y)-f_{0}\right\|, \tag{1,7}
\end{equation*}
$$

for y in some neighbourhood of $x_{0} \in S$, where $A_{0}^{\prime}(x)$ denotes the derivative of A_{0} at $x \in E, A_{0}^{\prime}(x)^{*}$ is the adjoint of $A_{0}^{\prime}(x), \tau$ is some positive constant, and

$$
\begin{equation*}
\langle U(x)-U(y), x-y\rangle \geq m_{U}\|x-y\|^{s}, \quad \forall x, y \in E, s \geq 2, m_{U}>0 \tag{1,8}
\end{equation*}
$$

*Condition (1.7) is called the tangential cone condition and is widely used in the analysis of regularization methods for solving nonlinear ill-posed inverse problems (see [16]).

Note that when $A_{i}(x) \equiv f_{i}$ for $i=1,2, \ldots, N$, we have $\rho(\alpha)=\| A_{0}\left(x_{\alpha}^{\delta}\right)$ $f_{0}^{\delta} \|$. In addition, if $q=0$, then we obtain the residual principle, investigated in Chapter 3 of $[1]$ and therein references. In the case that $q>0,(1.6)$ is the generalized residual principle, that was first proposed in [11] for linear illposed operator equations. Then, it was developed in [12] and [13]. Recently, for nonlinear ill-posed problems involving mappings of monotone type, it was studied in [14, 15], [17]-[20]. So, for the case $A_{i}(x) \neq f_{i}$ with $i=1,2, \ldots, N$, the principle above is named "generalized quasi-residual one".

2. Main Results

First, we have to prove the following lemmas.
Lemma 2.1. Let E be a reflexive and strictly convex Banach space with the ES-property and strictly convex E^{*}. Let $\left\{A_{i}\right\}_{i=0}^{N}$ and $\left\{f_{i}\right\}_{i=0}^{N}$ be $N+1$ potential, hemicontinuous and monotone mappings on E and $N+1$ elements in E^{*} such that the set S of solutions for (1.1) be nonempty. Then, we have:
(i) The function $\rho(\alpha)$, defined in (1.6), is continuous on $\left(\alpha_{0},+\infty\right)$, for each $\alpha_{0}>0$.
(ii) If A_{N} is continuous at x^{+}and

$$
\begin{equation*}
\left\|A_{N}\left(x^{+}\right)-f_{N}^{\delta}\right\|>0, \tag{2.1}
\end{equation*}
$$

for all $\delta \geq 0$, where $f_{N}^{0}=f_{N}$, then

$$
\lim _{\alpha \rightarrow+\infty} \rho(\alpha)=+\infty .
$$

Proof. From (1.4) it follows

$$
\sum_{i=0}^{N} \alpha^{\mu_{i}}\left\langle A_{i}\left(x_{\alpha}^{\delta}\right)-f_{i}^{\delta}, x_{\alpha}^{\delta}-z\right\rangle+\alpha\left\langle U\left(x_{\alpha}^{\delta}-x^{+}\right), x_{\alpha}^{\delta}-z\right\rangle=0, \quad \forall z \in S .
$$

Or,

$$
\begin{align*}
& \sum_{i=0}^{N} \alpha^{\mu_{i}}\left\langle A_{i}\left(x_{\alpha}^{\delta}\right)-A_{i}(z)+A_{i}(z)-f_{i}+f_{i}-f_{i}^{\delta}, x_{\alpha}^{\delta}-z\right\rangle \tag{2.2}\\
& +\alpha\left(U\left(x_{\alpha}^{\delta}-x^{+}\right), x_{\alpha}^{\delta}-z\right\rangle=0, \quad \forall z \in S
\end{align*}
$$

Theñ, by virtue of (1.2), (2.2) and the monotonicity of A_{i}, we have

$$
\begin{equation*}
\left\langle U\left(x_{\alpha}^{\delta}-x^{+}\right), x_{\alpha}^{\delta}-z\right\rangle \leq \delta \sum_{i=0}^{N} \frac{1}{\alpha^{1-\mu_{i}}}\left\|x_{\alpha}^{\delta}-z\right\|, \quad \forall z \in S . \tag{2.3}
\end{equation*}
$$

Therefore,

$$
\left\|x_{\alpha}^{\delta}-x^{+}\right\|^{2}-\left\|x_{\alpha}^{\delta}-x^{+}\right\|\left[\left\|z-x^{+}\right\|+\delta \sum_{i=0}^{N} \frac{1}{\alpha^{1-\mu_{i}}}\right]-\left\|z-x^{+}\right\| \delta \sum_{i=0}^{N} \frac{1}{\alpha^{1-\mu_{i}}} \leq 0
$$

and hence,

$$
\begin{align*}
0 & \leq\left\|x_{\alpha}^{\delta}-x^{+}\right\| \\
\leq & \frac{1}{2}\left\{\left\|x^{+}-z\right\|+\delta \sum_{i=0}^{N} \frac{1}{\alpha^{1-\mu_{i}}}\right. \\
& \left.+\sqrt{\left(\left\|x^{+}-z\right\|+\delta \sum_{i=0}^{N} \frac{1}{\alpha^{1-\mu_{i}}}\right)^{2}+4\left\|x^{+}-z\right\| \delta \sum_{i=0}^{N} \frac{1}{\alpha^{1-\mu_{i}}}}\right\} \tag{2.4}\\
& \leq\left\|z-x^{+}\right\|+\delta \sum_{i=0}^{N} \frac{1}{\alpha^{1-\mu_{i}}}+\left(\delta \sum_{i=0}^{N} \frac{1}{\alpha^{1-\mu_{i}}}\left\|z-x^{+}\right\|\right)^{1 / 2} .
\end{align*}
$$

Now, let α and β be any two numbers in $\left(\alpha_{0},+\infty\right)$. From (1.4), we also have that

$$
\begin{aligned}
& \sum_{i=0}^{N} \alpha^{\mu_{i}}\left(A_{i}\left(x_{\alpha}^{\delta}\right)-f_{i}^{\delta}\right)-\sum_{i=0}^{N} \beta^{\mu_{i}}\left(A_{i}\left(x_{\beta}^{\delta}\right)-f_{i}^{\delta}\right)+\alpha U\left(x_{\alpha}^{\delta}-x^{+}\right) \\
& -\beta U\left(x_{\beta}^{\delta}-x^{+}\right)=0 .
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
& \alpha\left\langle U\left(x_{\alpha}^{\delta}-x^{+}\right)-U\left(x_{\beta}^{\delta}-x^{+}\right), x_{\alpha}^{\delta}-x_{\beta}^{\delta}\right\rangle+(\alpha-\beta)\left\langle U\left(x_{\beta}^{\delta}-x^{+}\right), x_{\alpha}^{\delta}-x_{\beta}^{\delta}\right\rangle \\
& +\sum_{i=0}^{N} \alpha^{\mu_{i}}\left\langle A_{i}\left(x_{\alpha}^{\delta}\right)-A_{i}\left(x_{\beta}^{\delta}\right), x_{\alpha}^{\delta}-x_{\beta}^{\delta}\right\rangle+\sum_{i=0}^{N}\left(\alpha^{\mu_{i}}-\beta^{\mu_{i}}\right)\left\langle A_{i}\left(x_{\beta}^{\delta}\right)-f_{i}^{\delta}, x_{\alpha}^{\delta}-x_{\beta}^{\delta}\right\rangle \\
& =0 .
\end{aligned}
$$

The last equality together with the following property of U (see Lemma 1.5.4 in [1]),

$$
\langle U(x)-U(y), x-y\rangle \geq(\|x\|-\|y\|)^{2}
$$

for any $x, y \in E$, implies that

$$
\begin{aligned}
& \left(\left\|x_{\alpha}^{\delta}-x^{+}\right\|-\left\|x_{\beta}^{\delta}-x^{+}\right\|\right)^{2} \\
& \leq\left[\frac{|\alpha-\beta|}{\alpha_{0}}\left\|x_{\beta}^{\delta}-x^{+}\right\|+\sum_{i=1}^{N} \frac{\left|\alpha^{\mu_{i}}-\beta^{\mu_{i}}\right|}{\alpha_{0}}\left\|A_{i}\left(x_{\beta}^{\delta}\right)-f_{i}^{\delta}\right\|\right]\left(\left\|x_{\alpha}^{\delta}\right\|+\left\|x_{\beta}^{\delta}\right\|\right)
\end{aligned}
$$

So, from the last inequality and (2.4) with α replaced by α_{0} in its right-hand side, it follows the continuity of $\left\|x_{\alpha}^{\delta}-x^{+}\right\|$at any $\beta \in\left(\alpha_{0},+\infty\right)$. Thus, $\rho(\alpha)$ is continuous on ($\alpha_{0},+\infty$). Now, again from (1.4), we can write that

$$
\sum_{i=0}^{N} \alpha^{\mu_{i}}\left(A_{i}\left(x_{\alpha}^{\delta}\right)-A_{i}\left(x^{+}\right)\right)+\alpha U\left(x_{\alpha}^{\delta}-x^{+}\right)=\sum_{i=0}^{N} \alpha^{\mu_{i}}\left(f_{i}^{\delta}-A_{i}\left(x^{+}\right)\right)
$$

Acting on the last equality by $x_{\alpha}^{\delta}-x^{+}$and using the monotonicity of A_{i} and the definition of U, we obtain that

$$
\left\|x_{\alpha}^{\delta}-x^{+}\right\| \leq \sum_{i=0}^{N} \frac{1}{\alpha^{1-\mu_{i}}}\left\|f_{i}^{\delta}-A_{i}\left(x^{+}\right)\right\| .
$$

Thus,

$$
\lim _{\alpha \rightarrow+\infty}\left\|x_{\alpha}^{\delta}-x^{+}\right\|=0
$$

Clearly, the conclusion of the Lemma is followed from the last equality,

$$
\rho(\alpha) \geq \alpha^{\mu_{N}}\left[\left\|A_{N}\left(x_{\alpha}^{\delta}\right)-f_{N}^{\delta}\right\|-\sum_{i=0}^{N-1} \frac{1}{\alpha^{\mu_{N}-\mu_{i}}}\left\|A_{i}\left(x_{\alpha}^{\delta}\right)-f_{i}^{\delta}\right\|\right],
$$

the continuity of A_{N} at x^{+}, the local boundedness of A_{i} (see [1], Theorem 1.3.16), for $i=0,1, \ldots, N$, and $\mu_{N}>\mu_{i}$.

Lemma 2.2. Let E, A_{i} and f_{i} be as in Lemma 2.1. For each $p, q, \delta>0$, there exists at least a value $\alpha>0$ such that (1.6) holds.
Proof. Clearly, from Lemma 2.1, the function $\alpha \rightarrow \alpha^{1+q}\left\|x_{\alpha}^{\delta}-x^{0}\right\|=\alpha^{q} \rho(\alpha)$ is continuous on ($\alpha_{0},+\infty$) for any $\alpha_{0}>0$ and

$$
\lim _{\alpha \rightarrow+\infty} \alpha^{q} \rho(\alpha)=+\infty .
$$

On the other hand, from (2.4) it follows that

$$
\alpha^{q} \rho(\alpha) \leq \alpha^{q+1}\left\|x^{+}-z\right\|+\alpha^{q} \delta \sum_{i=0}^{N} \alpha^{\mu_{i}}+\alpha^{q}\left(\alpha \delta \sum_{i=0}^{N} \alpha^{\mu_{i}}\left\|x^{+}-z\right\|\right)^{1 / 2} .
$$

For each $0<\delta<1$, we can choose $\alpha>0$ such that

$$
\alpha^{q+1}\left\|x^{+}-z\right\|, \alpha^{q} \delta \sum_{i=0}^{N} \alpha^{\mu_{i}}, \alpha^{q}\left(\alpha \delta \sum_{i=0}^{N} \alpha^{\mu_{i}}\left\|x^{+}-z\right\|\right)^{1 / 2}<\delta^{p} / 3 .
$$

So, $\alpha^{q} \rho(\alpha)<\delta^{p}$ for sufficiently small α. Hence, there exists at least a value $\bar{\alpha}=\alpha(\delta)$ such that $\alpha(\delta)^{q} \rho(\alpha(\delta))=\delta^{p}$.

Lemma 2.3. Let E, A_{i} and f_{i} be as in Lemma 2.1. Moereover, let any N mappings of the system $\left\{A_{i}\right\}_{i=0}^{N}$ be strictly monotone at x^{+}. Then,

$$
\lim _{\delta \rightarrow 0} \alpha(\delta)=0
$$

Proof. Without any loss of generality, we assume that A_{i} is a strictly monotone mapping at x^{+}with $i=0,1, \ldots, N-1$. We shall prove by supposing that the conclusion is not true. Then, there is a sequence $\delta_{k} \rightarrow 0$ as $k \rightarrow+\infty$ with

1) $\bar{\alpha}_{k}=\alpha\left(\delta_{k}\right) \rightarrow C_{0}$, some positive constant; or
2) $\bar{\alpha}_{k} \rightarrow+\infty$.

In the case 1), from (1.6), is follows that $C_{0}^{1+q} \lim _{k \rightarrow+\infty}\left\|x_{\alpha_{k}}^{\delta_{k}}-x^{+}\right\|=0$. Next, replacing δ, α and x in (1.4), respectively, by $\delta_{k}, \bar{\alpha}_{k}$ and $x_{\bar{\alpha}_{k}}^{\delta_{k}}$, and passing $k \rightarrow+\infty$, we obtain that

$$
\begin{equation*}
\sum_{i=0}^{N} C_{0}^{\mu_{i}}\left(A_{i}\left(x^{+}\right)-A_{i}(z)\right)=0, \quad z \in S \tag{2,5}
\end{equation*}
$$

Acting on the equality by $x^{+}-z$ and using the monotonicity of A_{i} for $i=$ $0,1, \ldots, N$, and $C_{0}>0$, we have

$$
\left\langle A_{i}\left(x^{+}\right)-A_{i}(z), x^{+}-z\right\rangle=0, \quad i=0,1, \ldots, N .
$$

Since A_{i} is strictly monotone at x^{+}for $i=0,1, \ldots, N-1, x^{+} \in \bigcap_{i=0}^{N-1} S_{i}$. Therefore, from (2.5) it follows that $x^{+} \in S_{N}$. Hence, $x^{+} \in S$, that contradicts the assumption $x^{+} \notin S$.

In the case 2), also from (1.6), it follows that

$$
\begin{equation*}
\lim _{k \rightarrow+\infty}\left\|x_{\bar{\alpha}_{k}}^{\delta_{k}}-x^{+}\right\|=\lim _{k \rightarrow+\infty} \frac{\rho\left(\bar{\alpha}_{k}\right)}{\bar{\alpha}_{k}}=\lim _{k \rightarrow+\infty} \frac{\delta_{k}^{p}}{\bar{\alpha}_{k}^{1+q}}=0 \tag{2.6}
\end{equation*}
$$

Again, replacing δ, α and x in (1.4), respectively, by $\delta_{k}, \bar{\alpha}_{k}$ and $x_{\bar{\alpha}_{k}}^{\delta_{k}}$, we obtain that

$$
\begin{aligned}
& \bar{\alpha}_{k}^{\mu_{N}}\left[\left\|A_{N}\left(x_{\bar{\alpha}_{k}}^{\delta_{k}}\right)-f_{N}^{\delta_{k}}\right\|-\sum_{i=0}^{N-1} \frac{1}{\bar{\alpha}_{k}^{\mu_{N}-\mu_{i}}}\left\|A_{i}\left(x_{\bar{\alpha}_{k}}^{\delta_{k}}\right)-f_{i}^{\delta_{k}}\right\|\right]-\left\|A_{0}\left(x_{\bar{\alpha}_{k}}^{\delta_{k}}\right)-f_{0}^{\delta_{k}}\right\| \\
& \leq \bar{\alpha}_{k}\left\|x_{\bar{\alpha}_{k}}^{\delta_{k}}-x^{+}\right\|=\rho\left(\bar{\alpha}_{k}\right)=\bar{\alpha}_{k}^{-q} \delta_{k}^{p} .
\end{aligned}
$$

Tending $k \rightarrow+\infty$ in the last inequality and using (2.6), the local boundedness of A_{i}, for $i=0,1, \ldots, N-1$, the continuity of A_{N} at x^{+}with condition (2.1), and the fact that $\bar{\alpha}_{k} \rightarrow+\infty$ and $\delta_{k} \rightarrow 0$, we obtain the inequality $+\infty \leq 0$, that is impossible. This completes the proof,

Lemma 2.4. Let E, A_{i} and f_{i} be as in Lemma 2.3. If $q \geq p$, then

$$
\lim _{\delta \rightarrow 0} \delta / \alpha(\delta)=0
$$

Proof. It is easy to see that

$$
\left[\frac{\delta}{\alpha(\delta)}\right]^{p}=\left[\delta^{p} \alpha(\delta)^{-q}\right] \alpha(\delta)^{q-p}=\rho(\alpha(\delta)) \alpha(\delta)^{q-p} .
$$

On the other hand, from (2.4) it follows that

$$
\rho(\alpha(\delta)) \leq \alpha(\delta)\left\|x^{+}-z\right\|+\delta \sum_{i=0}^{N} \alpha^{\mu_{i}}(\delta)+\left(\alpha(\delta) \delta \sum_{i=0}^{N} \alpha^{\mu_{i}}(\delta)\left\|x^{+}-z\right\|\right)^{1 / 2} .
$$

Therefore,

$$
\lim _{\delta \rightarrow 0}\left[\frac{\delta}{\alpha(\delta)}\right]^{p}=0
$$

The lemma is proved.
Lemma 2.5. Let E, A_{i} and f_{i} be as in Lemma 2.3. If $0<p \leq q$, then

$$
\lim _{\delta \rightarrow 0} x_{\alpha(\delta)}^{\delta}=x_{0}
$$

Proof. It follows from Lemmas 2.3, 2.4 and standard results about convergence of the Browder-Tikhonov regularization method for (1.4) (see [8, 20]).

Lemma 2.6. Let E, A_{i} and f_{i} be as in Lemma 2.3 and let $0<p \leq q$. Then, there are constants $C_{1}, C_{2}>0$ such that, for sufficiently small $\delta>0$, the relation

$$
C_{1} \leq \delta^{p} \alpha^{-1-q}(\delta) \leq C_{2}
$$

holds.
Proof. Because of (1.2) and (1.5), we have, for all $\alpha>0, f_{i}^{\delta} \in E^{*}$,

$$
\rho(\alpha)=\alpha(\delta)\left\|x_{\alpha(\delta)}^{\delta}-x^{+}\right\|,
$$

which together with Lemma 2.5 implies that

$$
\left.\lim _{\delta \rightarrow 0} \delta^{p} \alpha^{-1-q}(\delta)=\lim _{\delta \rightarrow 0} \alpha^{-1}(\delta) \rho(\alpha(\delta))\right)=\left\|x_{0}-x^{+}\right\|>0 .
$$

This implies the conclusion of the lemma.

Theorem 2.7. Let E, A_{i} and f_{i} be as in Lemma 2.3. In addition, assume that the following conditions hold:
(i) the duality mapping U satisfies (1.8);
(ii) A_{0} is Fréchet differentiable at some neighbourhood of S with (1.7);
(iii) there exists an element $\omega \in E$ such that

$$
A_{0}^{\prime}\left(x_{0}\right)^{*} \omega=U\left(x_{0}-x^{+}\right) \text {, and }
$$

(iv) the parameter $\alpha=\alpha(\delta)$ is chosen by (1.6) with $q>p$.

Then, we have

$$
\left\|x_{\alpha(\delta)}^{\delta}-x_{0}\right\|=O\left(\delta^{\eta}\right), \quad \eta=\frac{1}{1+q} \min \left\{(q-p) /(s-1) ; p \mu_{1} / s\right\} .
$$

Proof. From (1.4), (1.8), the monotonicity of A_{i} and condition (iii) of the theorem it follows

$$
\begin{align*}
m_{U}\left\|x_{\alpha}^{\delta}-x_{0}\right\|^{s} \leq & \left\langle U\left(x_{\alpha}^{\delta}-x^{+}\right)-U\left(x_{0}-x^{+}\right), x_{\alpha}^{\delta}-x_{0}\right\rangle \\
= & \frac{1}{\alpha} \sum_{i=0}^{N} \alpha^{\mu_{i}}\left\langle f_{i}^{\delta}-A_{i}\left(x_{\alpha}^{\delta}\right), x_{\alpha}^{\delta}-x_{0}\right\rangle \\
& +\left\langle U\left(x_{0}-x^{+}\right), x_{0}-x_{\alpha}^{\delta}\right\rangle \\
\leq & \frac{\delta}{\alpha} \sum_{i=0}^{N} \alpha^{\mu_{i}}\left\|x_{\alpha}^{\delta}-x_{0}\right\|+\left\langle\omega, \mid A_{0}^{\prime}\left(x_{0}\right)\left(x_{0}-x_{\alpha}^{\delta}\right)\right\rangle \tag{2,7}\\
\leq & \frac{\delta}{\alpha} \sum_{i=0}^{N} \alpha^{\mu_{i}}\left\|x_{\alpha}^{\delta}-x_{0}\right\|+\|\omega\|\left\|A_{0}^{\prime}\left(x_{0}\right)\left(x_{0}-x_{\alpha}^{\delta}\right)\right\| .
\end{align*}
$$

On the other hand, from (1.7), we have that

$$
\begin{aligned}
& \left\|A_{0}^{\prime}\left(x_{0}\right)\left(x_{0}-x_{\alpha}^{\delta}\right)\right\| \\
& \leq(1+\tau)\left\|A_{0}\left(x_{\alpha}^{\delta}\right)-f_{0}\right\| \leq(1+\tau)\left[\left\|A_{0}\left(x_{\alpha}^{\delta}\right)-f_{0}^{\delta}\right\|+\delta\right] \\
& \leq(1+\tau)\left[\delta+\sum_{i=1}^{N} \alpha^{\mu_{i}}\left\|A_{i}\left(x_{\alpha}^{\delta}\right)-f_{i}^{\delta}\right\|+\alpha\left\|x_{\alpha}^{\delta}-x^{+}\right\|\right] \\
& \leq(1+\tau)\left[\delta \sum_{i=0}^{N} \alpha^{\mu_{i}}+\alpha\left\|x_{\alpha}^{\delta}-x^{+}\right\|+\sum_{i=1}^{N} \alpha^{\mu_{i}}\left\|A_{i}\left(x_{\alpha}^{\delta}\right)-A_{i}\left(x_{0}\right)\right\|\right]
\end{aligned}
$$

A_{i} is locally bounded at x_{0}. Therefore, from (2.7) and Lemma 2.6, we obtain that

$$
\begin{aligned}
m_{U}\left\|x_{\alpha(\delta)}^{\delta}-x_{0}\right\|^{\delta} \leq & (1+N) C_{2} \delta^{1-p} \alpha^{q}(\delta)\left\|x_{\alpha(\delta)}^{\delta}-x_{0}\right\| \\
& +\|\omega\|(1+\tau)\left[\delta(1+N)+\alpha^{-q}(\delta) \delta^{p}+C N \alpha^{\mu_{1}}(\delta)\right] \\
\leq & (1+N) C_{2} C_{1}^{-q /(1+q)} \delta^{\frac{1-p}{1+q}}\left\|x_{\alpha(\delta)}^{\delta}-x_{0}\right\|+C N C_{1}^{-\frac{\mu_{1}}{1+q}} \delta^{\frac{p \mu_{1}}{1+q}} .
\end{aligned}
$$

Using the implication

$$
a, b, c \geq 0, p>q, a^{p} \leq b a^{q}+c \Longrightarrow a^{p}=O\left(b^{p /(p-q)}+c\right)
$$

we obtain

$$
\left\|x_{\alpha(\delta)}^{\delta}-x_{0}\right\|=O\left(\delta^{\eta}\right) \Rightarrow a^{p}=O\left(b^{p /(p-q)}+c\right)
$$

The theorem is proved.

Acknowledgments: This research is founded by Vietnamese National Foundation of Science and Technology Development.

References

[1] Y.I. Alber and I.P. Ryazantseva, Nonlinear Ill-Posed Problems of Monotone Types, Springer Verlag (2006).
[2] P.K. Anh, N. Buong and D.V. Hieu, Parallel methods for regularizing systems of equations involving accretive operators, Appl. Anal., 93(10) (2014), 2136-2157.
[3] J.B. Baillon and H. Hadda, Quelques propriétés des opérateurs angle-bornés etncycliquement monotones, Israel J. Math., 26(2) (1977), 137-150.
[4] J. Baumeister, B. Kaltenbacher and A. Leitao, On Levenberg-Marquardt Kaczmarz methods for regularizing system of nonlinear ill-posed equations, Inverse Probl. Imaging, 4 (2010), 335-350.
[5] N. Buong, Generalized discrepancy principle and ill-posed equations involving accretive operators, Nonlinear Funct. Anal. Appl., 9 (2004), 73-78.
[6] N. Buong, On monotone ill-posed problems, Acta Math. Sin. (Engl. Ser.), 21 (2005), 1001-1004.
[7] N. Buong, Convergence rates in regularization for ill-posed variational inequalities, Cubo, 7 (2005), 87-94.
[8] N. Buong, Regularization for unconstrained vector optimization of convex functionals in Banach spaces, Zh. Vychisl. Mat. Mat. Fiz., 46(3) (2006), 372-378.
[9] N. Buong, Regularization extragradient method for Lipschitz continuous mappings and inverse strongly monotone mappings in Hilbert spaces, Zh. Vychisl. Mat. Mat. Fiz., 48(11) (2008), 1927-1935.
[10] N. Buong and P.V. Loi, On parameter choice and convergence rates for a class of illposed variational inequalities, Zh. Vychisl. Mat. Mat. Fiz., 44 (2004), 1735-1744.
[11] N. Buong and N.T.T. Thuy, Convergence rates in regularization for ill-posed mixed variational inequalities, J. Comput. Sci. Cybern. Vietnam, 21 (2005), 343-352.

[^0]: ${ }^{0}$ Received October 18, 2014. Revised December 14, 2014.
 ${ }_{2} 2010$ Mathematics Subject Classification: $47 \mathrm{~J} 05,47 \mathrm{H} 09,49 \mathrm{~J} 30$.
 ${ }^{0}$ Keywords: Monotone, strictly monotone, λ-inverse strongly-monotone mapping, reflexive Banach space, Fréchet differentiable, Browder-Tikhonov regularization.

