
Fundamentals of Modern VLSI Devices

Yuan Taur and Tak H. Ning

CAMBRIDGE

Fundamentals of Modern VLSI Devices

Learn the basic properties and designs of modern VLSI devices, as well as the factors affecting performance, with this thoroughly updated second edition. The first edition has been widely adopted as a standard textbook in microelectronics in many major US universities and worldwide. The internationally renowned authors highlight the intricate interdependencies and subtle tradeoffs between various practically important device parameters. An in-depth discussion of device scaling and scaling limits of CMOS and bipolar devices is also provided. Equations and parameters provided are checked continuously against the reality of silicon data, making the book equally useful in practical transistor design and in the classroom.

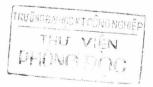
New to this edition:

- Every chapter has been updated to include the latest developments, such as MOSFET scale length theory, high-field transport models, and SiGe-base bipolar devices.
- Two new chapters cover read and write operations of commonly used SRAM, DRAM, and non-volatile memory arrays, as well as silicon-on-insulator (SOI) devices, including advanced devices of future potential.
- More useful appendices: The number has doubled from 9 to 18, covering areas such as spatial variation of quasi-Fermi potentials, image-force-induced barrier lowering, and power gain of a two-port network.
- New homework exercises at the end of every chapter engage students with real-world problems and test their understanding.

YUAN TAUR is Professor of Electrical and Computer Engineering at the University of California, San Diego. He spent 20 years at IBM's T. J. Watson Research Center where he won numerous invention and achievement awards. He is an IEEE Fellow, Editor-in-Chief of *IEEE Electron Device Letters*, and holds 14 US patents.

TAK H. NING is an IBM Fellow at the T. J. Watson Research Center, New York, where he has worked for over 35 years. A Fellow of the IEEE and the American Physical Society, and a member of the US National Academy of Engineering, he has authored more than 120 technical papers and holds 36 US patents. He has won several awards, including the ECS 2007 Gordon E. Moore Medal, the IEEE 1991 Jack A. Morton Award, and the 1998 Pan Wen-Yuan Foundation Outstanding Research Award.

5813


621.39 / YIA

Fundamentals of Modern VLSI Devices

SECOND EDITION

YJAN TAUR Uriversity of California, San Diego

TAK H. NING IBU T. J. Watson Research Center, New York

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9780521832946

Cambridge University Press 1998, 2009

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 1998 Second edition 2009 First paperback edition 2013 Reprinted 2014

Printed in the United Kingdom by the CPI Group Ltd, croydon CR0 4YY

A catalog record for this publication is available from the British Library

Library of Congress Cataloging in Publication data
Taur, Yuan, 1946–
Fundamentals of modern VLSI devices / Yuan Taur, Tak H. Ning. – 2nd ed. p. cm.
ISBN 978-0-521-83294-6
Metal oxide semiconductors, Complementary. 2. Bipolar transistors.
Integrated circuits – Very large scale integration.
I. Ning, Tak H., 1943– II. Title.
TK7871.99.M44T38 2009
621.39'5–dc22

2009007334

ISBN 978-0-521-83294-6 hardback ISBN 978-1-107-63571-5 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

Preface to the first edition	page xi				
Preface to the second edition					
Physical constants and unit conversions	xv				
List of symbols	xvi				
Introduction	1				
1.1 Evolution of VLSI Device Technology	1				
1.1.1 Historical Perspective	1				
1.1.2 Recent Developments	4				
1.2 Modern VLSI Devices	4				
1.2.1 Modern CMOS Transistors	4				
1.2.2 Modern Bipolar Transistors	5				
1.3 Scope and Brief Description of the Book	6				
Basic Device Physics	11				
2.1 Electrons and Holes in Silicon	11				
2.1.1 Energy Bands in Silicon	11				
2.1.2 n-Type and p-Type Silicon	17				
2.1.3 Carrier Transport in Silicon	23				
2.1.4 Basic Equations for Device Operation	27				
2.2 p-n Junctions					
2.2.1 Energy-Band Diagrams for a p-n Diode	35				
2.2.2 Abrupt Junctions	38				
2.2.3 The Diode Equation	46				
2.2.4 Current–Voltage Characteristics	51				
2.2.5 Time-Dependent and Switching Characteristics	64				
2.2.6 Diffusion Capacitance	70				
2.3 MOS Capacitors	72				
2.3.1 Surface Potential: Accumulation, Depletion, and Inversion	72				
2.3.2 Electrostatic Potential and Charge Distribution in Silicon	78				
2.3.3 Capacitances in an MOS Structure	85				
2.3.4 Polysilicon-Gate Work Function and Depletion Effects	91				
2.3.5 MOS under Nonequilibrium and Gated Diodes	94				

	2.3.6	Charge in Silicon Dioxide and at the Silicon-Oxide Interface	98
	2.3.7	Effect of Interface Traps and Oxide Charge on Device Characteristics	103
2.4	Metal-	-Silicon Contacts	108
	2.4.1	Static Characteristics of a Schottky Barrier Diode	108
	2.4.2	Current Transport in a Schottky Barrier Diode	115
	2.4.3	Current-Voltage Characteristics of a Schottky Barrier Diode	115
	2.4.4	Ohmic Contacts	120
2.5	High-F	Field Effects	122
	2.5.1	Impact Ionization and Avalanche Breakdown	122
	2.5.2	Band-to-Band Tunneling	125
	2.5.3	Tunneling into and through Silicon Dioxide	127
	2.5.4	Injection of Hot Carriers from Silicon into Silicon Dioxide	133
	2.5.5	High-Field Effects in Gated Diodes	135
	2.5.6	Dielectric Breakdown	137
	Exerci	ises	141
MOS	FET De	vices	148
3.1	Long-(Channel MOSFETs	148
	3.1.1	Drain-Current Model	149
	3.1.2	MOSFET I-V Characteristics	155
	3.1.3	Subthreshold Characteristics	163
	3.1.4	Substrate Bias and Temperature Dependence of Threshold Voltage	166
	3.1.5	MOSFET Channel Mobility	169
	3.1.6	MOSFET Capacitances and Inversion-Layer Capacitance Effect	172
3.2	Short-	Channel MOSFETs	175
	3.2.1	Short-Channel Effect	176
	3.2.2	Velocity Saturation and High-Field Transport	186
	3.2.3	Channel Length Modulation	195
	3.2.4	Source-Drain Series Resistance	196
	3.2.5	MOSFET Degradation and Breakdown at High Fields	196
	Exerci	ises	201
сма)S Devic	ce Design	204
4.1	MOSF	ET Scaling	204
	4.1.1	Constant-Field Scaling	204
	4.1.2	Generalized Scaling	207
	4.1.3	Nonscaling Effects	210
4.2	Thresh	old Voltage	212
	4.2.1	Threshold-Voltage Requirement	213
	4.2.2	Channel Profile Design	217
	4.2.3	Nonuniform Doping	224
	4.2.4	Quantum Effect on Threshold Voltage	234
	4.2.5	Discrete Dopant Effects on Threshold Voltage	239

3

5

4.3	MOSF	ET Channel Length	242
	4.3.1	Various Definitions of Channel Length	242
	4.3.2	Extraction of the Effective Channel Length	244
	4.3.3	Physical Meaning of Effective Channel Length	248
	4.3.4		252
	Exerci	ises	254
СМО)S Perfo	rmance Factors	256
5.1	Basic (CMOS Circuit Elements	256
	5.1.1	CMOS Inverters	256
	5.1.2	CMOS NAND and NOR Gates	266
	5.1.3	Inverter and NAND Layouts	270
5.2	Parasit	tic Elements	273
	5.2.1	Source-Drain Resistance	274
	5.2.2	Parasitic Capacitances	277
	5.2.3	Gate Resistance	280
	5.2.4	Interconnect R and C	283
5.3	Sensiti	vity of CMOS Delay to Device Parameters	289
	5.3.1	Propagation Delay and Delay Equation	289
	5.3.2	Delay Sensitivity to Channel Width, Length, and Gate Oxide Thickness	296
	5.3.3	Sensitivity of Delay to Power-Supply Voltage and Threshold Voltage	299
	5.3.4	Sensitivity of Delay to Parasitic Resistance and Capacitance	301
	5.3.5	Delay of Two-Way NAND and Body Effect	304
5.4	Perform	mance Factors of Advanced CMOS Devices	307
	5.4.1	MOSFETs in RF Circuits	308
	5.4.2	Effect of Transport Parameters on CMOS Performance	311
	5.4.3	Low-Temperature CMOS	312
	Exerci	ises	315
Bipo	olar Dev	ices	318
6.1	n-p-n	Transistors	318
	6.1.1	Basic Operation of a Bipolar Transistor	322
	6.1.2	Modifying the Simple Diode Theory for Describing Bipolar Transistors	322
6.2	Ideal C	Current-Voltage Characteristics	327
	6.2.1	Collector Current	329
	6.2.2	Base Current	330
	6.2.3	Current Gains	334
	6.2.4		336
6.3		cteristics of a Typical n-p-n Transistor	337
	6.3.1		338
	6.3.2	Effect of Base-Collector Voltage on Collector Current	340
	6.3.3		343
	6.3.4	Nonideal Base Current at Low Currents	347

6.4	Bipola	r Device Models for Circuit and Time-Dependent Analyses	352
	6.4.1	Basic dc Model	352
	6.4.2	Basic ac Model	355
	6.4.3	Small-Signal Equivalent-Circuit Model	356
	6.4.4	Emitter Diffusion Capacitance	359
	6.4.5	Charge-Control Analysis	361
6.5	Breakd	lown Voltages	366
	6.5.1	Common-Base Current Gain in the Presence of Base-Collector	
		Junction Avalanche	367
	6.5.2	Saturation Currents in a Transistor	369
	6.5.3	Relation Between BV_{CEO} and BV_{CBO}	370
	Exerci	ses	371
Bip	olar Devi	ice Design	374
7.1	Design	of the Emitter Region	374
	7.1.1	Diffused or Implanted-and-Diffused Emitter	375
	7.1.2	Polysilicon Emitter	376
7.2	Design	of the Base Region	377
	7.2.1	Relationship between Base Sheet Resistivity and Collector	
		Current Density	378
	7.2.2	Intrinsic-Base Dopant Distribution	380
	7.2.3	Electric Field in the Quasineutral Intrinsic Base	381
	7.2.4	Base Transit Time	384
7.3	Design	of the Collector Region	385
	7.3.1	Collector Design When There Is Negligible Base Widening	387
	7.3.2	Collector Design When There Is Appreciable Base Widening	388
7.4	SiGe-E	Base Bipolar Transistors	389
	7.4.1	Transistors Having a Simple Linearly Graded Base Bandgap	390
	7.4.2	Base Current When Ge Is Present in the Emitter	396
	7.4.3	Transistors Having a Trapezoidal Ge Distribution in the Base	401
	7.4.4	Transistors Having a Constant Ge Distribution in the Base	406
	7.4.5	Effect of Emitter Depth Variation on Device Characteristics	410
	7.4.6	Some Optimal Ge Profiles	414
	7.4.7	Base-Width Modulation by V_{BE}	419
	7.4.8	Reverse-Mode I-V Characteristics	423
	7.4.9	Heterojunction Nature of a SiGe-Base Bipolar Transistor	426
7.5	Moder	n Bipolar Transistor Structures	429
	7.5.1	Deep-Trench Isolation	429
	7.5.2	Polysilicon Emitter	430
	7.5.3	Self-Aligned Polysilicon Base Contact	430
	7.5.4	Pedestal Collector	431
	7.5.5	SiGe-Base	431
	Exerci	ses	432