The Art of Error Correcting Coding

SECOND EDITION

The Art of Error Correcting Coding

The Art of Error Correcting Coding, Second Edition Robert H. Morelos-Zaragoza © 2006 John Wiley & Sons, Ltd. ISBN: 0-470-01558-6

The Art of Error Correcting Coding

Second Edition

Robert H. Morelos-Zaragoza San Jose State University, USA

Copyright © 2006

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk Visit our Home Page on www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of the Publisher. Requests to the Publisher should be addressed to the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The Publisher is not associated with any product or vendor mentioned in this book.

This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 42 McDougall Street, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 6045 Freemont Blvd, Mississauga, ONT, L5R 4J3, Canada

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN-13: 978-0-470-01558-2 (HB) ISBN-10: 0-470-01558-6 (HB)

Typeset in 10/12pt Times by Laserwords Private Limited, Chennai, India. Printed and bound in Great Britain by Antony Rowe Ltd, Chippenham, England. This book is printed on acid-free paper responsibly manufactured from sustainable forestry in which at least two trees are planted for each one used for paper production.

Contents

Preface					
Fa	Foreword				
Tl	he EC	C web site	xiii		
1	Intr	ntroduction			
	1.1	Error correcting coding: Basic concepts			
		1.1.1 Block codes and convolutional codes	4		
		1.1.2 Hamming distance, Hamming spheres and error correcting capability	5		
	1.2	Linear block codes	7		
		1.2.1 Generator and parity-check matrices	7		
		1.2.2 The weight is the distance	8		
	1.3	Encoding and decoding of linear block codes	8		
		1.3.1 Encoding with G and H	8		
		1.3.2 Standard array decoding	10		
		1.3.3 Hamming spheres, decoding regions and the standard array	12		
	1.4	Weight distribution and error performance	13		
		1.4.1 Weight distribution and undetected error probability over a BSC	14		
		1.4.2 Performance bounds over BSC, AWGN and fading channels	15		
	1.5	General structure of a hard-decision decoder of linear codes	23		
	Prob	lems	23		
2	Han	uming, Golay and Reed–Muller codes	27		
	2.1	Hamming codes	27		
		2.1.1 Encoding and decoding procedures	28		
	2.2	The binary Golay code	29		
		2.2.1 Encoding	29		
		2.2.2 Decoding	30		
		2.2.3 Arithmetic decoding of the extended (24, 12, 8) Golay code	30		
	2.3	Binary Reed–Muller codes	31		
		2.3.1 Boolean polynomials and RM codes	31		
		2.3.2 Finite geometries and majority-logic decoding	33		
	Prob	lems	37		

CONTENTS

3.1 Binary cyclic codes 39 3.1.1 Generator and parity-check polynomial 39 3.1.2 The generator polynomial 40 3.1.3 Encoding and decoding of binary cyclic codes 41 3.1.4 The parity-check polynomial 42 3.1.5 Shortened cyclic codes and CRC codes 44 3.1.6 Fire codes 45 3.2 General decoding of cyclic codes 46 3.2.1 <i>GF(2^m)</i> arithmetic 48 3.3 Binary BCH codes 52 3.3.1 BCH bound 53 3.4 Polynomial codes 53 3.5 Decoding of binary BCH codes 54 3.5.1 General decoding algorithm for BCH codes 56 3.5.2 The Berlekamp-Massey algorithm (BMA) 57 3.5.3 PGZ decoder 60 3.5.4 Euclidean algorithm 61 3.5.5 Chien search and error correction 63 3.6.1 Errors-and-erasures decoding 63 3.6.2 From binary BCH codes 73 4.1 RS codes as polyno	3	Binary cyclic codes and BCH codes						
$3.1.2$ The generator polynomial40 $3.1.3$ Encoding and decoding of binary cyclic codes41 $3.1.4$ The parity-check polynomial42 $3.1.5$ Shortened cyclic codes and CRC codes44 $3.1.6$ Fire codes45 3.2 General decoding of cyclic codes46 $3.2.1$ $GF(2^m)$ arithmetic48 3.3 Binary BCH codes52 $3.3.1$ BCH bound53 3.4 Polynomial codes53 3.5 Decoding of binary BCH codes56 $3.5.1$ General decoding algorithm for BCH codes56 $3.5.2$ The Berlekamp-Massey algorithm (BMA)57 $3.5.3$ PGZ decoder60 $3.5.4$ Euclidean algorithm61 $3.5.5$ Chien search and error correction63 $3.5.6$ Errors-and-erasures decoding63 3.6 Weight distribution and performance bounds65 $3.6.1$ Error performance evaluation66Problems694Nonbinary BCH codes: Reed-Solomon codes73 4.1 RS codes73 4.2 From binary BCH to RS codes73 4.3 Decoding Algorithms79 $4.3.2$ Errors-and-erasures decoding74 $4.3.3$ Remarks on decoding algorithms79 $4.3.4$ Veight distribution79 $4.3.2$ Errors-and-erasures decoding74 $4.3.3$ Decoding RS codes74 $4.3.3$ Remarks on decoding algo		3.1	Binary cyclic codes	39				
3.1.2 The generator polynomial 40 3.1.3 Encoding and decoding of binary cyclic codes 41 3.1.4 The parity-check polynomial 42 3.1.5 Shortened cyclic codes and CRC codes 44 3.1.6 Fire codes 45 3.2 General decoding of cyclic codes 46 3.1.1 Brite codes 45 3.2 General decoding of cyclic codes 48 3.3 Binary BCH codes 52 3.3.1 BCH bound 53 3.4 Polynomial codes 53 3.5 Decoding of binary BCH codes 56 3.5.1 General decoding algorithm for BCH codes 56 3.5.2 The Berlekamp-Massey algorithm (BMA) 57 3.5.4 Euclidean algorithm 61 3.5.5 Chien search and error correction 63 3.6 Weight distribution and performance bounds 53 3.6.1 Error performance evaluation 66 Problems 69 73 4.1 RS codes 73 4.2 From binary BCH to RS codes			3.1.1 Generator and parity-check polynomials	39				
3.1.3 Encoding and decoding of binary cyclic codes 41 3.1.4 The parity-check polynomial 42 3.1.5 Shortened cyclic codes and CRC codes 44 3.1.6 Fire codes 45 3.2 General decoding of cyclic codes 46 3.2.1 <i>GF</i> (2 ^m) arithmetic 48 3.3 Binary BCH codes 52 3.3.1 BCH bound 53 3.4 Polynomial codes 54 3.5.1 General decoding algorithm for BCH codes 56 3.5.2 The Berlekamp–Massey algorithm (BMA) 57 3.5.3 PGZ decoder 60 3.5.4 Euclidean algorithm 61 3.5.5 Chien search and error correction 63 3.6.1 Error performance ovaluation 66 Problems 69 73 4 Nonbinary BCH codes: Reed–Solomon codes 73 4.1 RS codes a polynomial codes 73 4.2 From binary BCH to RS codes 73 4.3 Decoding RS codes 74 4.4 Nonbinary BCH toRs codes <td< td=""><td></td><td></td><td></td><td></td></td<>								
3.1.4 The parity-check polynomial 42 3.1.5 Shortened cyclic codes and CRC codes 44 3.1.6 Fire codes 45 3.2 General decoding of cyclic codes 46 3.2.1 $GF(2^m)$ arithmetic 48 3.3 Binary BCH codes 52 3.3.1 BCH bound 53 3.4 Polynomial codes 53 3.5 Decoding of binary BCH codes 54 3.5.1 General decoding algorithm for BCH codes 56 3.5.2 The Berlekamp–Massey algorithm (BMA) 57 3.5.3 PGZ decoder 60 3.5.4 Euclidean algorithm 61 3.5.5 Chien search and error correction 63 3.6.1 Error and-erasures decoding 63 3.6.1 Error performance evaluation 66 Problems 69 73 4.1 RS codes as polynomial codes 73 4.2 From binary BCH to RS codes 73 4.3 Decoding RS codes 74 4.3.1 Remarks on decoding algorithms 79 <td></td> <td></td> <td></td> <td></td>								
3.1.5Shortened cyclic codes and CRC codes443.1.6Fire codes453.2General decoding of cyclic codes463.2.1 $GF(2^m)$ arithmetic483.3Binary BCH codes523.3.1BCH bound533.4Polynomial codes533.5Decoding of binary BCH codes543.5.1General decoding algorithm for BCH codes563.5.2The Berlekamp-Massey algorithm (BMA)573.5.3PGZ decoder603.5.4Euclidean algorithm613.5.5Chien search and error correction633.5.6Errors-and-crasures decoding633.6Weight distribution and performance bounds653.6.1Error performance evaluation66Problems694Nonbinary BCH codes: Reed-Solomon codes734.1RS codes as polynomial codes734.3Decoding RS codes734.3Decoding RS codes734.3Decoding RS codes744.3.2Errors-and-erasures decoding794.3.2Errors-and-erasures decoding794.3.2Errors-and-erasures decoding795.1Basic structure875.1Basic structure875.1Basic structure945.2Connections with block codes945.2.1Zero-tail construction945.2.2Tail-biting construction955.3 <td></td> <td></td> <td></td> <td></td>								
3.1.6Fire codes453.2General decoding of cyclic codes463.2.1 $GF(2^m)$ arithmetic483.3Binary BCH codes523.3.1BCH bound533.4Polynomial codes533.5Decoding of binary BCH codes543.5.1General decoding algorithm for BCH codes563.5.2The Berlekamp–Massey algorithm (BMA)573.5.3PGZ decoder603.5.4Euclidean algorithm613.5.5Chien search and error correction633.5.6Errors-and-erasures decoding633.6.1Error performance evaluation66Problems694Nonbinary BCH codes:734.1RS codes734.2From binary BCH to RS codes734.3Decoding RS codes744.3.1Remarks on decoding algorithms794.3.2Errors-and-erasures decoding794.3.4Weight distribution84Problems845Binary convolutional codes925.1.2Free distance945.2.3Tail-biting construction945.2.4Weight distribution955.3Weight distribution955.4Weight distribution955.5Decoding With block codes945.2.4Weight distribution955.5Decoding With distributions955.4Weight distributi								
3.2 General decoding of cyclic codes 46 3.2.1 $GF(2^m)$ arithmetic 48 3.3 Binary BCH codes 52 3.3.1 BCH bound 53 3.4 Polynomial codes 53 3.5 Decoding of binary BCH codes 54 3.5.1 General decoding algorithm for BCH codes 56 3.5.2 The Berlekamp–Massey algorithm (BMA) 57 3.5.3 PGZ decoder 60 3.5.4 Euclidean algorithm 61 3.5.5 Chien search and error correction 63 3.5.6 Errors-and-erasures decoding 63 3.6.1 Error performance evaluation 66 Problems 69 69 4 Nonbinary BCH codes: Reed–Solomon codes 73 4.1 RS codes as polynomial codes 73 4.2 From binary BCH to RS codes 73 4.3 Decoding RS codes 74 4.3.1 Remarks on decoding algorithms 79 4.3.2 Errors-and-erasures decoding 79 4.4 Weight distribution 79								
3.2.1 $GF(2^m)$ arithmetic 48 3.3 Binary BCH codes 52 3.3.1 BCH bound 53 3.4 Polynomial codes 53 3.5 Decoding of binary BCH codes 54 3.5.1 General decoding algorithm for BCH codes 56 3.5.2 The Berlekamp–Massey algorithm (BMA) 57 3.5.3 PGZ decoder 60 3.5.4 Euclidean algorithm 61 3.5.5 Chien search and error correction 63 3.5.6 Errors-and-erasures decoding 63 3.6.1 Error performance evaluation 66 Problems 69 73 4.1 RS codes as polynomial codes 73 4.1 RS codes as polynomial codes 73 4.3 Remarks on decoding algorithms 79 4.3.1 Remarks on decoding algorithms 79 4.3.2 Errors-and-erasures decoding 79 4.4 Weight distribution 84 5 Binary convolutional codes 87 5.1.1 Recursive systematic convolutional codes <		3.2						
3.3 Binary BCH codes 52 3.3.1 BCH bound 53 3.4 Polynomial codes 53 3.5 Decoding of binary BCH codes 54 3.5.1 General decoding algorithm for BCH codes 56 3.5.2 The Berlekamp–Massey algorithm (BMA) 57 3.5.3 PGZ decoder 60 3.5.4 Euclidean algorithm 61 3.5.5 Chien search and error correction 63 3.5.6 Errors-and-erasures decoding 63 3.6.1 Error performance evaluation 66 Problems 69 69 4 Nonbinary BCH codes: Reed–Solomon codes 73 4.1 RS codes as polynomial codes 73 4.2 From binary BCH to RS codes 73 4.3 Decoding RS codes 74 4.3.1 Remarks on decoding algorithms 79 4.3.2 Errors-and-erasures decoding 79 4.3.2 Errors-and-erasures decoding 79 4.3.2 Errors-and-erasures decoding 79 4.4 Weight distribution								
3.3.1BCH bound533.4Polynomial codes533.5Decoding of binary BCH codes543.5.1General decoding algorithm for BCH codes563.5.2The Berlekamp-Massey algorithm (BMA)573.5.3PGZ decoder603.5.4Euclidean algorithm613.5.5Chien search and error correction633.5.6Errors-and-erasures decoding633.6Weight distribution and performance bounds653.6.1Error performance evaluation66Problems694Nonbinary BCH codes: Reed-Solomon codes734.1RS codes as polynomial codes734.2From binary BCH to RS codes744.3.1Remarks on decoding algorithms794.3.2Errors-and-erasures decoding794.3.2Errors-and-erasures decoding794.3.2Errors-and-erasures decoding925.1.1Recursive systematic convolutional codes925.1.2Free distance945.2.1Zero-tail construction945.2.2Direct-truncation construction945.2.3Tail-biting construction955.3Weight distributions955.4Weight distributions955.5Decoding: Viterbi algorithm with Hamming metrics101		3.3						
3.4Polynomial codes533.5Decoding of binary BCH codes543.5.1General decoding algorithm for BCH codes563.5.2The Berlekamp-Massey algorithm (BMA)573.5.3PGZ decoder603.5.4Euclidean algorithm613.5.5Chien search and error correction633.5.6Errors-and-erasures decoding633.6Weight distribution and performance bounds653.6.1Error performance evaluation66Problems694Nonbinary BCH codes: Reed-Solomon codes734.1RS codes as polynomial codes734.2From binary BCH to RS codes734.3Decoding RS codes744.3.1Remarks on decoding algorithms794.3.2Errors-and-erasures decoding794.4Weight distribution84Problems845Binary convolutional codes925.1.1Recursive systematic convolutional codes925.1.2Free distance945.2.1Zero-tail construction945.2.2Direct-truncation construction955.3Weight enumeration955.4Weight enumeration975.4Performance bounds995.5Decoding: Viterbi algorithm with Hamming metrics101			•					
3.5Decoding of binary BCH codes543.5.1General decoding algorithm for BCH codes563.5.2The Berlekamp-Massey algorithm (BMA)573.5.3PGZ decoder603.5.4Euclidean algorithm613.5.5Chien search and error correction633.5.6Errors-and-erasures decoding633.6Weight distribution and performance bounds653.6.1Error performance evaluation66Problems694Nonbinary BCH codes: Reed-Solomon codes734.1RS codes as polynomial codes734.2From binary BCH to RS codes734.3Decoding RS codes744.3.1Remarks on decoding algorithms794.3.2Errors-and-erasures decoding794.3.2Errors-and-erasures decoding794.3.4Weight distribution84Problems845Binary convolutional codes925.1.1Recursive systematic convolutional codes925.1.2Free distance945.2.1Zero-tail construction945.2.2Direct-truncation construction955.2.3Tail-biting construction955.3Weight distributions955.4Weight distributions955.5Decoding: Viterbi algorithm with Hamming metrics101		3.4						
3.5.1General decoding algorithm for BCH codes563.5.2The Berlekamp-Massey algorithm (BMA)573.5.3PGZ decoder603.5.4Euclidean algorithm613.5.5Chien search and error correction633.5.6Errors-and-erasures decoding633.6Weight distribution and performance bounds653.6.1Error performance evaluation66Problems694Nonbinary BCH codes: Reed-Solomon codes734.1RS codes as polynomial codes734.2From binary BCH to RS codes734.3Decoding RS codes744.3.1Remarks on decoding algorithms794.3.2Errors-and-erasures decoding794.4Weight distribution84Problems925.1.25Binary convolutional codes925.1.2Free distance945.2Connections with block codes945.2.1Zero-tail construction945.2.2Direct-truncation construction955.2.3Tail-biting construction955.3Weight distributions955.4Weight distributions955.5Decoding: Viterbi algorithm with Hamming metrics90								
3.5.2The Berlekamp–Massey algorithm (BMA)573.5.3PGZ decoder603.5.4Euclidean algorithm613.5.5Chien search and error correction633.5.6Errors-and-erasures decoding633.6Weight distribution and performance bounds653.6.1Error performance evaluation66Problems694Nonbinary BCH codes: Reed–Solomon codes734.1RS codes as polynomial codes734.2From binary BCH to RS codes734.3Decoding RS codes744.3.1Remarks on decoding algorithms794.3.2Errors-and-erasures decoding794.4Weight distribution84Problems845Binary convolutional codes925.1.1Recursive systematic convolutional codes925.1.2Free distance945.2Connections with block codes945.2.1Zero-tail construction945.2.2Direct-truncation construction955.2.3Tail-biting construction955.3Weight distributions955.4Weight distributions955.3Weight distributions955.4Weight distributions955.5Decoding: Viterbi algorithm with Hamming metrics101		0.0						
3.5.3PGZ decoder603.5.4Euclidean algorithm613.5.5Chien search and error correction633.5.6Errors-and-erasures decoding633.6Weight distribution and performance bounds653.6.1Error performance evaluation66Problems694Nonbinary BCH codes: Reed–Solomon codes734.1RS codes as polynomial codes734.2From binary BCH to RS codes734.3Decoding RS codes744.3.1Remarks on decoding algorithms794.3.2Errors-and-erasures decoding794.4Weight distribution84Problems845Binary convolutional codes875.1.1Recursive systematic convolutional codes925.2.2Direct-truncation construction945.2.2Direct-truncation construction955.2.3Tail-biting construction955.3Weight enumeration995.5Decoding: Viterbi algorithm with Hamming metrics101								
3.5.4 Euclidean algorithm 61 3.5.5 Chien search and error correction 63 3.5.6 Errors-and-erasures decoding 63 3.6 Weight distribution and performance bounds 65 3.6.1 Error performance evaluation 66 Problems 69 4 Nonbinary BCH codes: Reed–Solomon codes 73 4.1 RS codes as polynomial codes 73 4.2 From binary BCH to RS codes 73 4.3 Decoding RS codes 74 4.3.1 Remarks on decoding algorithms 79 4.3.2 Errors-and-erasures decoding 79 4.4 Weight distribution 84 Problems 84 84 5 Binary convolutional codes 87 5.1.1 Recursive systematic convolutional codes 92 5.2.2 Direct-truncation construction 94 5.2.1 Zero-tail construction 94 5.2.2 Direct-truncation construction 95 5.2.3 Tail-biting construction 95 5.3 Weight distributions								
3.5.5 Chien search and error correction 63 3.5.6 Errors-and-erasures decoding 63 3.6 Weight distribution and performance bounds 65 3.6.1 Error performance evaluation 66 Problems 69 4 Nonbinary BCH codes: Reed–Solomon codes 73 4.1 RS codes as polynomial codes 73 4.2 From binary BCH to RS codes 73 4.3 Decoding RS codes 74 4.3.1 Remarks on decoding algorithms 79 4.3.2 Errors-and-erasures decoding 79 4.4 Weight distribution 84 Problems 84 84 5 Binary convolutional codes 87 5.1 Basic structure 87 5.1.2 Free distance 94 5.2 Connections with block codes 94 5.2.1 Zero-tail construction 94 5.2.2 Direct-truncation construction 95 5.3 Weight distributions 95 5.3 Weight distributions 95 5.								
3.5.6 Errors-and-erasures decoding 63 3.6 Weight distribution and performance bounds 65 3.6.1 Error performance evaluation 66 Problems 69 4 Nonbinary BCH codes: Reed–Solomon codes 73 4.1 RS codes as polynomial codes 73 4.2 From binary BCH to RS codes 73 4.3 Decoding RS codes 73 4.3 Decoding RS codes 74 4.3.1 Remarks on decoding algorithms 79 4.3.2 Errors-and-erasures decoding 79 4.3.2 Errors-and-erasures decoding 79 4.3.2 Errors-and-erasures decoding 79 4.4 Weight distribution 84 Problems 84 84 5 Binary convolutional codes 87 5.1 Basic structure 87 5.1.2 Free distance 94 5.2.1 Zero-tail construction 94 5.2.2 Direct-truncation construction 94 5.2.3 Tail-biting construction 95 5.								
3.6 Weight distribution and performance bounds 65 3.6.1 Error performance evaluation 66 Problems 69 4 Nonbinary BCH codes: Reed–Solomon codes 73 4.1 RS codes as polynomial codes 73 4.2 From binary BCH to RS codes 73 4.3 Decoding RS codes 74 4.3.1 Remarks on decoding algorithms 79 4.3.2 Errors-and-erasures decoding 79 4.3.2 Errors-and-erasures decoding 79 4.4 Weight distribution 84 Problems 84 84 5 Binary convolutional codes 92 5.1.1 Recursive systematic convolutional codes 92 5.1.2 Free distance 94 5.2.1 Zero-tail construction 94 5.2.2 Direct-truncation construction 94 5.2.3 Tail-biting construction 95 5.3.4 Weight distributions 95 5.3 Weight distributions 97 5.4 Performance bounds 99								
3.6.1 Error performance evaluation 66 Problems 69 4 Nonbinary BCH codes: Reed–Solomon codes 73 4.1 RS codes as polynomial codes 73 4.2 From binary BCH to RS codes 73 4.3 Decoding RS codes 73 4.3 Decoding RS codes 74 4.3.1 Remarks on decoding algorithms 79 4.3.2 Errors-and-erasures decoding 79 4.4 Weight distribution 84 Problems 84 5 Binary convolutional codes 87 5.1.1 Recursive systematic convolutional codes 92 5.1.2 Free distance 94 5.2.1 Zero-tail construction 94 5.2.2 Direct-truncation construction 94 5.2.3 Tail-biting construction 95 5.3 Weight distributions 95 5.3 Weight distributions 97 5.4 Performance bounds 99 5.5 Decoding: Viterbi algorithm with Hamming metrics 101		36						
Problems 69 4 Nonbinary BCH codes: Reed–Solomon codes 73 4.1 RS codes as polynomial codes 73 4.2 From binary BCH to RS codes 73 4.3 Decoding RS codes 73 4.3 Decoding RS codes 74 4.3.1 Remarks on decoding algorithms 79 4.3.2 Errors-and-erasures decoding 79 4.4 Weight distribution 84 Problems 84 5 Binary convolutional codes 87 5.1 Basic structure 87 5.1.2 Free distance 94 5.2.2 Direct-truncation construction 94 5.2.2 Direct-truncation construction 94 5.2.3 Tail-biting construction 95 5.3 Weight distributions 95 5.3 Weight distributions 97 5.4 Performance bounds 99 5.5 Decoding: Viterbi algorithm with Hamming metrics 101		5.0						
4 Nonbinary BCH codes: Reed-Solomon codes 73 4.1 RS codes as polynomial codes 73 4.2 From binary BCH to RS codes 73 4.3 Decoding RS codes 73 4.3 Decoding RS codes 74 4.3.1 Remarks on decoding algorithms 79 4.3.2 Errors-and-erasures decoding 79 4.3.2 Errors-and-erasures decoding 79 4.4 Weight distribution 84 Problems 84 S Binary convolutional codes 87 5.1 Basic structure 87 5.1.1 Recursive systematic convolutional codes 92 5.1.2 Free distance 94 5.2 Connections with block codes 94 5.2.1 Zero-tail construction 94 5.2.2 Direct-truncation construction 95 5.2.3 Tail-biting construction 95 5.3 Weight distributions 95 5.4 Performance bounds 99 5.5 Decoding: Viterbi algorithm with Hamming metrics 101 <		Prob						
4.1 RS codes as polynomial codes 73 4.2 From binary BCH to RS codes 73 4.3 Decoding RS codes 74 4.3.1 Remarks on decoding algorithms 79 4.3.2 Errors-and-erasures decoding 79 4.3.2 Errors-and-erasures decoding 79 4.3.2 Errors-and-erasures decoding 79 4.4 Weight distribution 84 Problems 84 S Binary convolutional codes 87 5.1 Basic structure 87 5.1.1 Recursive systematic convolutional codes 92 5.1.2 Free distance 94 5.2 Connections with block codes 94 5.2.1 Zero-tail construction 94 5.2.2 Direct-truncation construction 95 5.2.3 Tail-biting construction 95 5.3 Weight distributions 95 5.4 Performance bounds 99 5.5 Decoding: Viterbi algorithm with Hamming metrics 101		1100	nems	07				
4.1 RS codes as polynomial codes 73 4.2 From binary BCH to RS codes 73 4.3 Decoding RS codes 74 4.3.1 Remarks on decoding algorithms 79 4.3.2 Errors-and-erasures decoding 79 4.3.2 Errors-and-erasures decoding 79 4.4 Weight distribution 79 4.4 Weight distribution 84 Problems 84 5 Binary convolutional codes 87 5.1 Basic structure 87 5.1.1 Recursive systematic convolutional codes 92 5.1.2 Free distance 94 5.2 Connections with block codes 94 5.2.1 Zero-tail construction 94 5.2.2 Direct-truncation construction 95 5.2.3 Tail-biting construction 95 5.3 Weight distributions 95 5.4 Performance bounds 99 5.5 Decoding: Viterbi algorithm with Hamming metrics 101	4	Nonbinary BCH codes: Reed–Solomon codes						
4.2 From binary BCH to RS codes 73 4.3 Decoding RS codes 74 4.3.1 Remarks on decoding algorithms 79 4.3.2 Errors-and-erasures decoding 79 4.4 Weight distribution 84 Problems 84 5 Binary convolutional codes 87 5.1 Basic structure 87 5.1.1 Recursive systematic convolutional codes 92 5.1.2 Free distance 94 5.2 Connections with block codes 94 5.2.1 Zero-tail construction 94 5.2.2 Direct-truncation construction 94 5.2.3 Tail-biting construction 95 5.3 Weight distributions 95 5.3 Weight enumeration 97 5.4 Performance bounds 99 5.5 Decoding: Viterbi algorithm with Hamming metrics 101				73				
4.3 Decoding RS codes 74 4.3.1 Remarks on decoding algorithms 79 4.3.2 Errors-and-erasures decoding 79 4.4 Weight distribution 84 Problems 84 5 Binary convolutional codes 87 5.1 Basic structure 87 5.1.2 Free distance 92 5.1.2 Free distance 94 5.2.1 Zero-tail construction 94 5.2.2 Direct-truncation construction 94 5.2.3 Tail-biting construction 95 5.3 Weight enumeration 97 5.4 Performance bounds 99 5.5 Decoding: Viterbi algorithm with Hamming metrics 101		4.2						
4.3.1 Remarks on decoding algorithms 79 4.3.2 Errors-and-erasures decoding 79 4.4 Weight distribution 84 Problems 84 5 Binary convolutional codes 87 5.1 Basic structure 87 5.1.1 Recursive systematic convolutional codes 92 5.1.2 Free distance 94 5.2 Connections with block codes 94 5.2.1 Zero-tail construction 94 5.2.2 Direct-truncation construction 94 5.2.3 Tail-biting construction 95 5.3 Weight distributions 95 5.3 Weight enumeration 97 5.4 Performance bounds 99 5.5 Decoding: Viterbi algorithm with Hamming metrics 101		4.3						
4.3.2 Errors-and-erasures decoding 79 4.4 Weight distribution 84 Problems 84 5 Binary convolutional codes 87 5.1 Basic structure 87 5.1.1 Recursive systematic convolutional codes 92 5.1.2 Free distance 94 5.2 Connections with block codes 94 5.2.1 Zero-tail construction 94 5.2.2 Direct-truncation construction 95 5.2.3 Tail-biting construction 95 5.3 Weight enumeration 97 5.4 Performance bounds 99 5.5 Decoding: Viterbi algorithm with Hamming metrics 101								
4.4 Weight distribution 84 Problems 84 5 Binary convolutional codes 87 5.1 Basic structure 87 5.1.1 Recursive systematic convolutional codes 92 5.1.2 Free distance 94 5.2 Connections with block codes 94 5.2.1 Zero-tail construction 94 5.2.2 Direct-truncation construction 95 5.2.3 Tail-biting construction 95 5.3 Weight enumeration 97 5.4 Performance bounds 99 5.5 Decoding: Viterbi algorithm with Hamming metrics 101								
Problems845 Binary convolutional codes875.1 Basic structure875.1.1 Recursive systematic convolutional codes925.1.2 Free distance945.2 Connections with block codes945.2.1 Zero-tail construction945.2.2 Direct-truncation construction955.2.3 Tail-biting construction955.2.4 Weight distributions955.3 Weight enumeration975.4 Performance bounds995.5 Decoding: Viterbi algorithm with Hamming metrics101		4.4						
5.1Basic structure875.1.1Recursive systematic convolutional codes925.1.2Free distance945.2Connections with block codes945.2.1Zero-tail construction945.2.2Direct-truncation construction955.2.3Tail-biting construction955.2.4Weight distributions955.3Weight enumeration975.4Performance bounds995.5Decoding: Viterbi algorithm with Hamming metrics101			•					
5.1Basic structure875.1.1Recursive systematic convolutional codes925.1.2Free distance945.2Connections with block codes945.2.1Zero-tail construction945.2.2Direct-truncation construction955.2.3Tail-biting construction955.2.4Weight distributions955.3Weight enumeration975.4Performance bounds995.5Decoding: Viterbi algorithm with Hamming metrics101								
5.1.1Recursive systematic convolutional codes925.1.2Free distance945.2Connections with block codes945.2.1Zero-tail construction945.2.2Direct-truncation construction955.2.3Tail-biting construction955.2.4Weight distributions955.3Weight enumeration975.4Performance bounds995.5Decoding: Viterbi algorithm with Hamming metrics101	5	Bina	•	87				
5.1.2Free distance945.2Connections with block codes945.2.1Zero-tail construction945.2.2Direct-truncation construction955.2.3Tail-biting construction955.2.4Weight distributions955.3Weight enumeration975.4Performance bounds995.5Decoding: Viterbi algorithm with Hamming metrics101		5.1						
5.2Connections with block codes945.2.1Zero-tail construction945.2.2Direct-truncation construction955.2.3Tail-biting construction955.2.4Weight distributions955.3Weight enumeration975.4Performance bounds995.5Decoding: Viterbi algorithm with Hamming metrics101			5.1.1 Recursive systematic convolutional codes	92				
5.2Connections with block codes945.2.1Zero-tail construction945.2.2Direct-truncation construction955.2.3Tail-biting construction955.2.4Weight distributions955.3Weight enumeration975.4Performance bounds995.5Decoding: Viterbi algorithm with Hamming metrics101			5.1.2 Free distance	94				
5.2.2 Direct-truncation construction955.2.3 Tail-biting construction955.2.4 Weight distributions955.3 Weight enumeration975.4 Performance bounds995.5 Decoding: Viterbi algorithm with Hamming metrics101		5.2	Connections with block codes	94				
5.2.3 Tail-biting construction955.2.4 Weight distributions955.3 Weight enumeration975.4 Performance bounds995.5 Decoding: Viterbi algorithm with Hamming metrics101			5.2.1 Zero-tail construction	94				
5.2.4 Weight distributions955.3 Weight enumeration975.4 Performance bounds995.5 Decoding: Viterbi algorithm with Hamming metrics101			5.2.2 Direct-truncation construction	95				
5.3Weight enumeration			5.2.3 Tail-biting construction	95				
5.3Weight enumeration								
5.4 Performance bounds995.5 Decoding: Viterbi algorithm with Hamming metrics101		5.3	•					
5.5 Decoding: Viterbi algorithm with Hamming metrics		5.4	· · · · · · · · · · · · · · · · · · ·					
		5.5						

		5.5.2	The Viterbi algorithm	102	
		5.5.3	Implementation issues	104	
	5.6	Punctu	red convolutional codes	112	
		5.6.1	Implementation issues related to punctured convolutional codes .	115	
		5.6.2	RCPC codes		
	Prob	olems .			
6	Mod	lifying a	and combining codes	119	
	6.1	Modify	ying codes	119	
		6.1.1	Shortening	119	
		6.1.2	Extending	121	
		6.1.3	Puncturing	122	
		6.1.4	Augmenting, expurgating and lengthening	122	
	6.2	Combi	ning codes	124	
		6.2.1	Time sharing of codes		
		6.2.2	Direct sums of codes	125	
		6.2.3	The $ u u + v $ -construction and related techniques	126	
		6.2.4	Products of codes	128	
		6.2.5	Concatenated codes		
		6.2.6	Generalized concatenated codes		
	Prob	olems .		140	
7	Soft-decision decoding				
	7.1	Binary	transmission over AWGN channels	144	
	7.2	Viterbi	algorithm with Euclidean metric	145	
	7.3	Decodi	ing binary linear block codes with a trellis	146	
	7.4	The Cl	hase algorithm	150	
	7.5		d statistics decoding		
	7.6	Genera	alized minimum distance decoding	156	
		7.6.1	Sufficient conditions for optimality	157	
	7.7	List de	ecoding	158	
	7.8	Soft-ou	utput algorithms		
		7.8.1	Soft-output Viterbi algorithm		
		7.8.2	Maximum-a posteriori (MAP) algorithm		
		7.8.3	Log-MAP algorithm		
		7.8.4	Max-Log-MAP algorithm		
		7.8.5	Soft-output OSD algorithm		
	Prob	olems .		165	
8	Itera	-	decodable codes	169	
	8.1		ve decoding		
	8.2	Produc	et codes		
		8.2.1	Parallel concatenation: Turbo codes		
		8.2.2	Serial concatenation		
		8.2.3	Block product codes		
	8.3		ensity parity-check codes		
		8.3.1	Tanner graphs	190	

CONTENT	S
---------	---

		8.3.2	Iterative hard-decision decoding: The bit-flip algorithm	192
		8.3.3	Iterative probabilistic decoding: Belief propagation	196
	Prob	lems .		201
9	Com		codes and digital modulation	203
	9.1	Motiva	tion	203
		9.1.1	Examples of signal sets	204
		9.1.2	Coded modulation	206
		9.1.3	Distance considerations	207
	9.2	Trellis-	coded modulation (TCM)	208
		9.2.1	Set partitioning and trellis mapping	209
		9.2.2	Maximum-likelihood decoding	211
		9.2.3	Distance considerations and error performance	212
		9.2.4	Pragmatic TCM and two-stage decoding	213
	9.3	Multile	vel coded modulation	217
		9.3.1	Constructions and multistage decoding	217
		9.3.2	Unequal error protection with MCM	221
	9.4	Bit-inte	erleaved coded modulation	225
		9.4.1	Gray mapping	226
		9.4.2	Metric generation: De-mapping	
		9.4.3	Interleaving	227
	9.5	Turbo t	trellis-coded modulation	227
		9.5.1	Pragmatic turbo TCM	228
		9.5.2	Turbo TCM with symbol interleaving	
		9.5.3	Turbo TCM with bit interleaving	229
	Prob	lems .	· · · · · · · · · · · · · · · · · · ·	230
		• • • ••		
Ap			Veight distributions of extended BCH codes	233
		0	8	
			16	
			32	
		U	64	
	A.5	Length	128	238
Bi	bliogr	aphy		247
In	dex			257

Preface

The first edition of this book was the result of hundreds of emails from all over the world with questions on the theory and applications of error correcting coding (ECC), from colleagues from both academia and industry. Most of the questions have been from engineers and computer scientists needing to select, implement or simulate a particular coding scheme. The questions were sparked by a popular web site¹ initially set up at Imai Laboratory at the Institute of Industrial Science, University of Tokyo, in early 1995. An important aspect of this text is the absence of theorems and proofs. The approach is to teach basic concepts using simple examples. References to theoretical developments are made when needed. This book is intended to be a reference guide to error correcting coding techniques for graduate students and professionals interested in learning the basic techniques and applications of ECC. Computer programs that implement the basic encoding and decoding algorithms of practical coding schemes are available on a companion web site. This site is referred to as the "ECC web site" throughout the text and is located at:

http://the-art-of-ecc.com

This book is unique in that it introduces the basic concepts of error correcting codes with simple illustrative examples. Computer programs written in C language and new Matlab² scripts are available on the ECC web site and help illustrate the implementation of basic encoding and decoding algorithms of important coding schemes, such as convolutional codes, Hamming codes, BCH codes, Reed–Solomon codes and turbo codes, and their application in digital communication systems. There is a rich theory of ECC that will be touched upon, by referring to the appropriate material. There are many good books dealing with the theory of ECC, for example, references (Lin and Costello 2005), (MacWilliams and Sloane 1977), (Peterson and Weldon 1972), (Blahut 1984), (Bossert 1999), (Wicker 1995), just to cite a few. Readers may wish to consult them before, during or after going through the material in this book. Each chapter describes, using simple and easy-to-follow numerical examples, the basic concepts of a particular coding or decoding scheme, rather than going into the detail of the theory behind it. Basic analysis tools are given to help in the assessment of the error performance of a particular ECC scheme.

The book deals with the *art* of error correcting coding, in the sense that it addresses the need for selecting, implementing and simulating algorithms for encoding and decoding of codes for error correction and detection. New features of the second edition include additional in-text examples as well as new problems at the end of each chapter, intended for use in a course on ECC. A comprehensive bibliography is included, for readers who wish

¹http://www.eccpage.com

²Matlab is a registered trademark of The Mathworks, Inc.

to learn more about the beautiful theory that makes it all work. The book is organized as follows. In Chapter 1, the basic concepts of error correction and coding and decoding techniques are introduced. Chapter 2 deals with important and simple-to-understand families of codes, such as the Hamming, Golay and Reed-Muller codes. In Chapter 3, cyclic codes and the important family of BCH codes are described. Finite-field arithmetic is introduced and basic decoding algorithms, such as Berlekamp-Massey, Euclidean and PGZ, are described, and easy to follow examples are given to understand their operation. Chapter 4 deals with Reed-Solomon codes and errors-and-erasures decoding. A comprehensive treatment of the available algorithms is given, along with examples of their operation. In Chapter 5, binary convolutional codes are introduced. Focus in this chapter is on the understanding of the basic structure of these codes, along with a basic explanation of the Viterbi algorithm with Hamming metrics. Important implementation issues are discussed. In Chapter 6, several techniques for modifying a single code or combining several codes are given and illustrated by simple examples. Chapter 7 deals with soft-decision decoding algorithms, some of which have not yet received attention in the literature, such as a soft-output orderedstatistics decoding algorithm. Moreover, Chapter 8 presents a unique treatment of turbo codes, both parallel concatenated and serial concatenated, and block product codes, from a coding theoretical perspective. In the same chapter, low-density parity-check codes are examined. For all these classes of codes, basic decoding algorithms are described and simple examples are given. Finally, Chapter 9 deals with powerful techniques that combine error correcting coding with digital modulation, and several clever decoding techniques are described.

I would like to express my gratitude to the following persons for inspiring this work. Professor Francisco Garcia Ugalde, Universidad Nacional Autónoma de México, for introducing me to the exciting world of error correcting codes. Parts of this book are based on my Bachelor's thesis under his direction. Professor Edward Bertram, University of Hawaii, for teaching me the basics of abstract algebra. Professor David Muñoz, Instituto Technológico y de Estudios Superiores de Monterrey, México, for his kindness and support. Professors Tadao Kasami, Hiroshima City University, Toru Fujiwara, University of Osaka, and Hideki Imai, University of Tokyo, for supporting my stay as a visiting academic researcher in Japan. Dan Luthi and Advait Mogre, LSI Logic Corporation, for many stimulating discussions and the opportunity to experience the process of putting ideas into silicon. Marc P. C. Fossorier of University of Hawaii for his kind help. My former colleague Dr. Misa Mihaljević of Sony Computer Science Laboratories, for pointing out connections between decoding and cryptoanalysis. I would also like to thank wholeheartedly Dr. Mario Tokoro, President of Sony Computer Science Laboratories, and Professor Ryuji Kohno, Yokohama National University, for making it possible for me to have a fine environment in which to write the first edition of this book. In particular, I want to express my eternal gratitude to Professor Shu Lin of University of California at Davis. I am also grateful to the graduate students of San Jose State University who took my course and helped in designing and testing some of the problems in the second edition.

I dedicate this book to Richard W. Hamming, Claude Shannon and Gustave Solomon, three extraordinary gentlemen who greatly impacted the way people live and work today.

Robert H. Morelos-Zaragoza San Jose, California, USA