ĐẠI HỌC THÁI NGUYÊN

TRƯỜNG ĐẠI HỌC KỸ THUẬT CÔNG NGHIỆP

CAO VĂN NHÃ

NGHIÊN CỨU ẢNH HƯỞNG CỦA CHẾ ĐỘ TRƠN NGUỘI ĐẾN NHIỆT ĐỘ VÙNG CẮT KHI MÀI PHẰNG THÉP 9XC QUA TÔI BẰNG ĐÁ MÀI HẢI DƯƠNG

LUẬN VĂN THẠC SĨ KỸ THUẬT

CHUYÊN NGÀNH Kỹ THUẬT CƠ KHÍ NGƯỜI HƯỚNG DẫN KHOA HỌC: PGS.TS. VŨ NGỌC PI

Thái Nguyên, tháng 11 năm 2016

LỜI CAM ĐOAN

Tôi xin cam đoan các số liệu và kết quả nêu trong Luận văn là trung thực và chưa từng được ai công bố trong bất ký một công trình nào khác. Trừ các phần tham khảo đã được nêu rõ trong luận văn.

Tác giả

Cao Văn Nhã

LỜI CẢM ƠN

Tác giả xin chân thành cảm ơn PGS.TS Vũ Ngọc Pi, người đã hướng dẫn và giúp đỡ tận tình từ định hướng đề tài, hướng dẫn lập kế hoạch thực nghiệm đến quá trình viết và hoàn chỉnh Luận văn.

Tác giả xin chân thành cảm ơn Thạc sĩ Vũ Tuấn Anh, người đã giúp đỡ tôi thiết kế và chế tạo thành công thiết bị đo nhiệt khi mài. Tác giả xin chân thành cảm ơn Thạc sĩ Lưu Anh Tùng đã giúp đỡ và phối hợp trong quá trình thực nghiệm để ra được kết quả chính xác của Luận văn.

Tác giả cũng xin chân thành cảm ơn Ban lãnh đạo Trường Trung cấp nghề Nam Thái Nguyên, Ban lãnh đạo và Khoa sau đại học Trường Đại học kỹ thuật công nghiệp Thái Nguyên đã tạo điều kiện thuận lợi để hoàn thành Luận văn này.

Đồng thời, tác giả xin cảm ơn các anh chị đang làm việc tại xưởng cơ khí Thái Hà đã tận tình giúp đỡ trong thời gian thực nghiệm tại xưởng.

Do năng lực bản thân còn nhiều hạn chế nên không tránh khỏi sai sót, tác giả mong nhận được sự đóng góp ý kiến của các Thầy cô, các nhà khoa học và các bạn đồng nghiệp.

Tác giả

Cao Văn Nhã

Trang

LỜI CAM ĐOAN	1
LỜI CẢM ƠN	2
DANH MỤC HÌNH VẼ VÀ ĐỒ THỊ	5
DANH MỤC CÁC BẢNG	10
PHẦN MỞ ĐẦU	11
1. Tính câp thiết của để tài	11
2. Mục tiêu của nghiên cứu	12
3. Kết quả dự kiến	12
4. Phương pháp nghiên cứu	12
5. Nội dung nghiên cứu	12
CHƯỜNG 1	
GIỚI THIỆU	
1.1. Giới thiệu về gia công mài và mài phẳng	14
1.2. Quá trình tạo phoi khi mài	15
1.3. Nhiệt cắt khi mài	16
1.3.1. Nhiệt cắt sinh ra khi mài và mài phẳng	16
1.3.2. Ảnh hưởng của nhiệt cắt khi mài	17
1.4. Bôi trơn làm mát khi mài phẳng	20
1.4.1. Vai trò của sử dụng dung dịch trơn nguội khi mài	20
1.4.2. Các loại dung dịch trơn nguội	21
1.4.3. Các phương pháp tưới nguội	23
1.5. Kết luận chương 1	25
CHƯỜNG 2	
TỔNG QUAN VỀ NHIỆT CẮT KHI MÀI VÀ ẢNH HƯỞNG	
CỦA TƯỚI NGUỘI ĐẾN NHIỆT CẮT KHI MÀI	
2.1. Tổng quan về nhiệt cắt khi mài	27

2.2. Tổng quan về ảnh hưởng của tưới nguội đến nhiệt cắt khi mài	
2.3. Kết luận chương 2	
CHƯƠNG 3	
THIẾT KẾ CHẾ TẠO HỆ THỐNG ĐO NHIỆT CẮT KHI	
MÀI PHẰNG	
3.1. Giới thiệu	53
3.2. Nguyên lý đo nhiệt độ	55
3.3. Sơ đồ hệ thống đo nhiệt độ khi mài phẳng	57
3.4. Kết luận chương 3	64
CHƯỜNG 4	
ẢNH HƯỞNG CỦA CHẾ ĐỘ TRƠN NGUỘI ĐẾN NHIỆT	
ĐỘ VÙNG CẮT KHI MÀI PHẰNG THÉP 9XC QUA TÔI	
BẰNG ĐÁ MÀI HẢI DƯƠNG.	
4.1. Thiết kế thí nghiệm	66
4.1.1. Các giả thiết của thí nghiệm	66
4.1.2. Thiết bị thực hiện thí nghiệm	66
4.1.3. Sơ đồ bố trí thí nghiệm	72
4.2. Thí nghiệm khảo sát ảnh hưởng của một số thông số công	
nghệ khi mài phẳng đến nhiệt cắt và nhám bề mặt	12
4.2.1. Phân tích kết quả thí nghiệm	
4.3. Thí nghiệm tối ưu hóa một số thông số công nghệ đến nhiệt	05
cắt T ₀ khi mài thép 90CrSi qua tôi bằng đá mài Hải Dương	03
4.4. Kết luận chương 4	89
CHƯƠNG 5	
KẾT LUẬN VÀ ĐỀ XUẤT.	
5.1. Kết luận	91
5.2. Đề xuất hướng nghiên cứu tiếp theo	91
TÀI LIÊU THAM KHẢO	93

DANH MỤC CÁC HÌNH VẼ VÀ ĐỒ THỊ

STT	Nội dung	Trang
Hình 1.1	Quá trình mài phẳng	14
Hình 1.2	Quá trình tạo phoi khi mài [1]	15
Hình 1.3	Sự phân bố năng lượng và nhiệt cắt khi mài [2]	16
Hình 1.4	Cấu trúc tế vi pha Austennit của thép không gỉ AISI 304[3]	18
Hình 1.5	Sự hình thành độ nhám bề mặt mài[4]	19
Hình 1.6	Sơ đồ tưới nguội thông dụng trên máy mài[5]	24
Hình 2.1	Mô hình vật rắn chịu tải nhiệt quá độ[6]	27
Hình 2.2	Kết quả mô phỏng bài toán truyền nhiệt quá độ bằng ANSYS[6]	28
Hình 2.3	Biểu đồ quan hệ giữa nhiệt độ và thời gian ở trung tâm vật khối[6]	28
Hình 2.4	Lưới mô hình nhiệt và điều kiện biên[7]	29
Hình 2.5	Mô hình nhiệt[7]	29
Hình 2.6	So sánh nhiệt đo bằng hồng ngoại và mô hình số[7]	30
Hình 2.7	Mối quan hệ giữa thông lượng nhiệt với chiều sâu cắt[6]	30
Hình 2.8	Mối quan hệ giữa thông lượng nhiệt và thời gian tác động của nguồn nhiệt[6]	31
Hình 2.9	Mối quan hệ giữa nhiệt độ bề mặt với chiều sâu cắt và vận tốc phôi[6]	32
Hình 2.10	Mối quan hệ giữa nhiệt độ bề mặt với chiều sâu cắt và vận tốc cắt[6]	32
Hình 2.11	Xu hướng nhiệt độ trên bề mặt trong HEDG [8]	33
Hình 2.12	Xu hướng nhiệt độ bề mặt với sự tăng tốc độ dụng cụ theo[8]	34

Hình 2.13	Nhiệt phân vùng theo các thành phần trong HEDG [9]	35
Hình 2.14	Xu hướng phân phối Nhiệt độ trong HEDG với tốc độ làm việc và chiều sâu cắt [9]	35
Hình 2.15	So sánh nhiệt độ bề mặt phôi khi sử dụng chiều sâu z khác nhau[10]	36
Hình 2.16	Sự thay đổi nhiệt độ bề mặt với chiều sâu cắt và vận tốc phôi khác nhau[10]	37
Hình 2.17	Đồ thị lực cắt pháp tuyến và lực cắt tiếp tuyến trung bình khi sử dụng 3 loại dung dịch trơn nguội với 15 lượt cắt [11]	37
Hình 2.18	Đồ thị lực cắt pháp tuyến và lực cắt tiếp tuyến trung bình khi sử dụng 3 loại dung dịch trơn nguội với 30 lượt cắt [11]	38
Hình 2.19	Đồ thị hệ số lực cắt Kp khi mài thép X12M bằng đá mài CBN và đá mài thường, sử dụng 3 loại dung dịch trơn nguội với 15 và 30 lượt cắt [11]	38
Hình 2.20	Đồ thị hệ số khả năng cắt khi mài thép X12M của đá mài CBN và đá mài thường, sử dụng ba dung dịch trơn nguội với 15 và 30 lượt cắt [11].	39
Hình 2.21	Ånh hưởng của loại dung dịch trơn nguội đến độ nhám bề mặt gia công khi mài bằng đá Al ₂ O ₃ và CBN [12]	40
Hình 2.22	Ảnh hưởng của nồng độ dung dịch đến độ nhám bề mặt mài [13]	41
Hình 2.23	Ånh SEM bề mặt mài với dung dịch nhũ tương [14]	42
Hình 2.24	Ảnh hưởng của lưu lượng tới tốc độ bóc tách vật liệu [14]	43

Hình 2.25	Ånh hưởng của lưu lượng tới giới hạn năng lượng [14]	43
Hình 2.26	Ứng suất dư bề mặt mài với lưu lượng tưới nguội khác nhau [15].	44
Hình 2.27	So sánh nhiệt độ vùng cắt khi sử dụng phương pháp bôi trơn khác nhau[17]	45
Hình 2.28	Sự phụ thuộc nhiệt độ mài thép EN31 vào tốc độ bóc tách vật liệu khi sử dụng phương pháp bôi trơn làm mát khác nhau[18]	46
Hình 2.29	Sự phụ thuộc nhiệt độ mài thép M2 vào tốc độ bóc tách vật liệu khi sử dụng phương pháp bôi trơn làm mát khác nhau[18]	46
Hình 2.30	Sự phụ thuộc nhiệt độ mài thép EN8 vào tốc độ bóc tách vật liệu khi sử dụng phương pháp bôi trơn làm mát khác nhau[18].	47
Hình 2.31	Độ tăng của nhiệt độ mài với khoảng cách z khác nhau khi mài khô[19]	48
Hình 2.32	Độ tăng của nhiệt độ mài với khoảng cách z khác nhau khi mài dùng phương pháp tưới tràn[19]	49
Hình 2.33	Độ tăng của nhiệt độ mài với khoảng cách z khác nhau khi mài dùng phương pháp bôi trơn tối thiểu[19]	50
Hình 2.34	Ảnh hưởng của phương pháp tưới nguội tới ứng suất dư bề mặt khi mài bằng đá Al ₂ O ₃ và đá CBN [20]	51
Hình 2.35	Ảnh hưởng của phương pháp tưới nguội tới ứng suất dư bề mặt khi mài bằng đá BWA60MVA1 [21]	51
Hình 3.1	Cấu tạo của đầu đo nhiệt	55
Hình 3.2	Sơ đồ nguyên lý cặp nhiệt ngẫu	56
Hình 3.3	Cầu hình thiết lập cặp nhiệt hai cực	57

Hình 3.4	Sơ đồ khối tổng quan phần cứng	57
Hình 3.5	Khối cảm biến	58
Hình 3.6	Khối cảm biến, lọc và khuếch đại	58
Hình 3.7	Sơ đồ nguyên lý của module chuyển đổi tín hiệu và truyền thông	59
Hình 3.8	Sơ đồ khối hệ nhúng	59
Hình 3.9	Sơ đồ thuật toán phần mềm	61
Hình 3.10	Giao diện người dùng với phần mềm	62
Hình 3.11	Module khuếch đại và hiển thị	63
Hình 4.1	Máy mài phẳng MOTO – YOKOHAMA – Nhật Bản	67
Hình 4.2	Bản vẽ thiết kế phôi thí nghiệm	67
Hình 4.3	Thiết bị đo nhiệt	69
Hình 4.4	Đồng hồ đo lưu lượng Z-5615 Panel Flowmeter	69
Hình 4.5	Máy đo độ nhám SJ-201 của hãng Mitutoyo	69
Hình 4.6	Đá mài Hải Dương dùng trong thí nghiệm	70
Hình 4.7	Sơ đồ bố trí thí nghiệm	71
Hình 4.8	Khai báo biến thí nghiệm sàng lọc	73
Hình 4.9	Đồ thị các ảnh hưởng chính của các yếu tố LL, ND, V_b , t đến nhiệt cắt T_0 .	76
Hình 4.10	Đồ thị các ảnh hưởng tương tác giữa các yếu tố LL, ND, V_b , t đến nhiệt cắt T_0 .	77
Hình 4.11	Đồ thị ảnh hưởng chuẩn hóa ảnh hưởng của các yếu tố LL, ND, V _b , t đến nhiệt cắt T ₀ .	79
Hình 4.12	Đồ thị Pareto của các yếu tố ảnh hưởng LL, ND, Vb, t đến nhiệt cắt T_0 .	80
Hình 4.13	Đồ thị các ảnh hưởng chính của các yếu tố LL, ND, V_b , t đến Ra.	81

Hình 4.14	Đồ thị các ảnh hưởng tương tác giữa các yếu tố LL, ND, V_b , t đến Ra.	82
Hình 4.15	Đồ thị ảnh hưởng chuẩn hóa ảnh hưởng của các yếu tố LL, ND, V _b ,, t đến Ra.	83
Hình 4.16	Đồ thị Pareto của các yếu tố ảnh hưởng LL, ND, V_b , t đến Ra.	84
Hình 4.17	Khai báo biến thí nghiệm tối ưu hóa.	85
Hình 4.18	Biểu đồ ảnh hưởng chính ở các mức của các yếu tố đến T_0 .	87
Hình 4.19	Biểu đồ ảnh hưởng chính ở các mức của các yếu tố đến hệ số S/N khi tối thiểu hóa T_0 .	88