CODE DEVELOPMENT 213

Voo
R
RST B W W N
31_4. I Vo Vo N
L Voo Vo N
ATO0S1200 R, —— 5\

L WL, N

o
S}.{| ® L W N

Sample

FIGURE 10.6 Block diagram for an alternative electronic dice circuit. R is a cur-
rent-limiting resistor for each of the segment LEDs of the seven-
segment display.

Figure 10.7 shows another possible alternative, not much different from our actual
immplementation, except that each LED 15 drniven independently by an output pin of the
processor. That only puts more demands on the processor resources. For this simple pro-
ject using an AT9051200, that may not be a big deal. as the extra required output pins are
available, but if you want to port it to a different processor with fewer pins, that may not
be possible. Also, this scheme. like the last one. requires extra resistors.

10.6 Code Development

How does one go about developing the whole system to be even as simple as the present
one? Does one put together the hardware and then write code for it, or develop code first
and then build the hardware? This is a tough question and there is no unique answer to this.
It will depend on a particular application.

Generally, it is a good idea to write and test as much code as possible using a simulator
or a prototype board. For this application, I used the Atmel’s evaluation board, MCUQO 100
(this has now been superseded by the more advanced STK200 and STK300 boards pro-
vided by Atmel) and wrote and tested all of the code. Once the code worked as 1 wanted,
I went ahead and built the circuit on a general-purpose PCB as described in the next
section.

The code itselt evolved. 1 present the three versions of code. each with some improve-
ment over the previous version. These three versions of code are put in assembler files
named ugly_dice.asm, bad_dice.asm, and good_dice. asm.

The program in ugly_dice.asm was the result of the first attempt at programming the
dice. It differs from the code in bad_dice.asm in the way the random number is output on
the LEDs. 1 ended up writing complex code to essentially implement an if-then-else struc-
ture. Later I realized that for our simple case, such a complex coding scheme is not
required. The code in ugly_dice.asm was then simplified and the resulting code is pre-
sented in bad_dice.asm.

Team LRN

214 AVR PROJECT 1

é +5V
H =

RST

A 4

ATS051200 I ' FAN AN AN

st 3

FIGURE 10.7 Block diagram for another alternative electronic dice circuit. R is a
current-limiting resistor for each of the LEDs. The seven LEDs are
again arranged as in Figure 10.1.

I
b sl

Lff

Finally. power-saving features were added to bad_dice.asm, resulting in the final code
in good_dice.asm.
Anyway, let us consider the code presented below.

jugly dice.asm

In the program I just initialize the Timer0 te count up
jusing the CLE/1024 as a clocking source. The Timer0 merrily
roounts up, resets teo 0 and starts all over again ad infinitum
jPortB is configured as all cutput and PortD bit 0 (PDO}

ras an input. The program waits for a key press and then
rtakes a snap shot of the Timerd [(register TCNTO), and then
iz further processed before put on the display. read on..
;Chananijay V. Gadre

11%th February 1993

inelude “1200def . ine®

.czeq
.org 0
rymp RESET ;Feaet Handle
RESET: 1di rle, 0b00O0O00101 ;DIVIO024 selected for timerd
gut TCCRO, rla4 sEimer0 counts up now
1di ri16, 0b111111131 jeonfigure PORT B for all cutputs
out DDRE, rlé
chi DDRD, O ;ecnfigure pin PDO as input
gsbhi PORTLD, O ;at the PDO0 zo that it can act as i/p
jwith internal pullup
get t: roall sw_input jwait for the switch to be pressed
141 r1m, 0b11111111 ;blank off the previous display
out PORTEB, rlH
roall delay jwait for some time
reall delay
reall delay
roall delay
roall delay
reall delay
in rl7, TCNTO sread the TimerD wvalus
more: mov rlf, rl7 jeopy rlT to rle

Team LRN

CODE DEVELOPMENT

inow check 1if the number iz less than S06

compa: copil rif, $06
brla encugh ;yes, then nothing more
jprepare to output it
jelse
cla jclear carry for sub
gbedi ¥18, S06 ;and subtract 506
rjmp compa ;jdo it t£ill the remainder is
1less than 508
encugh: cpl rl8, 500 ; CK, now the number in rl18 is

; betwean 0 and S

;The following piece of code makes this program ugly
;The identification of the number and display can be handled

jmore cleverly as in bad dice.asm

brne not 0
1di ri1s, ©¢bl1111110
out PORTB, rl3
rimp get t
cpi rl18,
brne not 1
1d4i r1s, 0bl11131101
out PORTE, rl2
rimp get t
cpi ris,
brne not_ 2
14i r1s, 0bl1111100
out PORTE, rls
rimp get t
cpi rll,
brne not 3
ldi rls, 0bl1111011
out PORTB, 1138
rimp get t
epi rilsa,
brne not 4
1di rls, 0B111110104
cut PORTB, rl8
rimp get t
141 rig,
out PORTE,
rimp get t
jDelay subroutine
;uses registers rl6 and rlB
;walues are seb arbitrarily

g0l

;

502

£03

not 2:

504

not 3:

0k11111001
rls

not 4:

;number i=s not zero
so display 1
LED B2

;oumher is O, on the

;LEDE, i.a. light up

;check if the number in ri18 iz 1

iyes, sc light up B1L and B3

icheck 1f it is Z

ino ik is not

iyes, it is. so light up Bl and B3

dElay: 141 rl6, 0B11111100
locphere: 1di rls, 0bl0001110
decrement : des rlB

brne decrement

dec rle

brne loophere

rat

jreturns when a key on PD0 is pressed and released
;£ill then it loops waiting for the key press

in rlg, PIND
andi rle,
brne =sw_input
reall delay

sw_input:

0bo0ooooool

jinput PORTD pin wvalue

rigolate PDO state

;if switch is not pressed, leoop back
i1f pressed, then wait some time to
iward off the awiteh bounces

pin 0: in rla, PIHD jnow check if the switch is releasad
andi rls, 0bO00OOCOODL
breqg pin 0

Team LRN

215

216 AVR PROJECT 1

reall delay
ret ;ewitch ig now released. _go back

The code in bad_dice.asm 15 the same as in ugly_dice.asm, except for the part that dis-
plays the resulting number (between) and 5). This code is as follows:

jeode segment from bad dice.asm
enough: 141 rl6, S01 ;eince the number i1s between 0 and 5
radd *1' to make it between 1 and &
add rig, rle

com rl8 ;the output display LEDs are arranged
;a8 active leow, so complement the result-
ing
;number

arli rl8, 0bl11110404 jeet the other unused port pins
;to an inactive state

out PORTE, rlfA ;ddaplay it!

rimp get t sthat it! go get more

The program uses free-running Timer(to get the randomness. However, it is possible
to use other methods of random number generation; a prominent one is to use Linear
Feedback Shift Register (LFSE) as outlined in a previous chapter. The advantage of the
LFSR method is that it only requires a seed to arm the LFSR, and then it will churn out
random numbers,

For this simple case, where the Timer(is not going to be used for any other task and is
always available, we could use it full time. The Timer(is clocked at 1/1024 the clock fre-
quency, and since the state of the timer is not known to the user, reading it gives a certain
randomness suitable for our purpose.

The program in good_dice.asm builds upon the code in bad_dice.asm by adding an
interrupt subroutine that occurs every time TCNTO overflows. With a clock input to the
counter of clk/1024, this occurs every 128 ms for a 2.000-MHz clock. The initialization
code in good_dice.asm initializes three registers as low_timer, med_timer, and high_timer
to zero. The interrupt subroutine increments these registers each time the timer overflow
DCCUTS.

By looking at the values in med_timer (you can modify the Timer0 ISR so that it pow-
ers down after a longer time), the Timer() ISR determines whether to blank off the display
with power-down sleep or not.

The Timer(interrupt subroutine from good_dice.asm is illustrated below.

jTimergd ISR from good dice_asm

ilow _timer, med timer and high timer are three registers

jthat held elapsed time. These registers are cleared to zero
jby main program every time a key is pressed, else their wvalue
jbuilds up and when it exceeds certain wvalue, this ISR powers
jdown and puts the processor to sleep

Timer int: in save status, SREG ;save status in reg save status
cpl med timer, $01 joompare med timer te 01
brne skip it ;i equal then prepare to power
; down
1ldi temp, 255 jtri-=tate all outputs
out PORTE, temp joonfigure all ports as OF
out BORTD, temp ;and set all walues to ‘17

out DDRD, temp

Team LRN

FABRICATION

cut DDRB, temp

in temp, MCUCE

ori temp, 530

cut MCUCE, temp

sleap

cut SREG, sawve status
rati -

ine low _timer
cp low timer, rZzZ2
breg inc med
out SREG, sawve status
reti

ine med timer
rp med timer, r22
breg inc_high
out SBREG,
reti

inc high timer

cut BREG, =ave status
rati

gkip it:

inc med:

zave status

ine_high:

;now zmet SE and SM bits in MCUCR
;register and make them ‘'1' to
;eelect power down mode of sleep
inow sleep off

;regtore status

jreturn. . wall ik doesn’'t matkber
7if not, increment low timer
;1f it overflows toc 0, then incr

jmed timer too.
;jelge restore status and return

tiner med timer and check if it
roverflows

;if wyes, then incr high timer
salse restore status and return

jiner high timer
;redtore status and return

10.7 Fabrication

Figure 10.8 shows the photograph of the dice circuit assembled on a general-purpose PCB.
The circuit was assembled using the same general fabrication techniques presented in a
previous chapter. For the AT905 1200 controller, we have used a 20-pin socket, which is a

-

-

-
L]
Ll
Ll
L]
L]

FIGURE 10.8 Photograph of the completed

dice circuit board.

Team LRN

218 AVR PROJECT 1

FIGURE 10.9 Photograph of the solder side of
the dice circuit board.

good idea for prototypes. If the processor is to be dedicated to this circuit and it is felt that
the code works satisfactorily and would not need further revision, in subsequent boards the
processor could be soldered directly onto the PCB to save the cost of the socket.

It is a good idea to solder the resistors, the socket, and the tiny switches right at the
beginning. Later, the capacitors and the crystal are soldered and in the end, the LEDs are
put in place. After all the components are soldered, proceed to wiring the components
together. Figure 10.9 illustrates the solder side of the dice circuit board.

10.8 Testing

After the circuit is assembled on the general-purpose board, it is a good idea to inspect for
possible shorts and open or unwanted electrical connections. A multimeter comes very
handy to check for open connections and shorts in the circuit board. Check if the supply
voltages are connected at the right place and the LEDs and the processor are mounted with
the right polarity. Connecting the processor the other way around will lead to a lot of grief.

Once you are satisfied that all the connections are proper, insert the processor in its
socket and apply power to the circuit. The applied voltage should be +5 V DC on the
processor supply input pins. For this project, all the LEDs should light up immediately.
Press and release the sample switch, and a random number between | and 6 should appear
on the LEDs. Press and release this switch many times and check that the sequence in fact
appears to be random. Also check that after pressing and releasing the switch, the display
blanks briefly before the new number is displayed. If the circuit seems to function as

Team LRN

POWER CONSUMPTION 219

described, congratulate vourself. If not, get ready for some detective work. First and fore-
most, check with a multimeter (in the DC voltmeter mode) that the supply voltage appears
at points that it should. such as between pin 20 and ground of the processor. Next check if
the reset switch is not sticking. This can be checked by monitoring the voltage on the reset
pin (pin 1) of the processor. Put one of the multimeter probes at pin 1 and the other at
ground (pin 10). When the RST switch is not pressed, the voltage at pin | should be around
the supply voltage of 435 V. Now press the RST switch: the pin 1 voltage should be 0V
now. Release the RST switch and watch this voltage go up to +3 'V again. If this is not hap-
pening, suspect your reset circuit composed of the resistance R4, capacitor C4, and the
RST switch J1.

If the circuit seems to reset properly and is still not functioning as expected. time to look
tor the oscillator circuit. For the components illustrated, the circuit works at 2.000 MHz, and
monitoring X2 (pin 4) should show sinusoidal oscillations at 2 MHz on an oscilloscope. If
this is not happening, the culprit could be the crystal or the two capacitors C2 and C3.

Check the operation of the sample switch to see that the logic at pin PD0 changes when
the switch is pressed and when released. Another possibility could be that the LEDs are
arranged the other way around; check that, too, and correct that if needed. This covers the
possible ways in which things could go wrong in this small project.

10.9 Usage

Well, using the dice is as simple as saying cheese. Just connect the dice to a suitable +5-V
source capable of supplying a few milliamperes (25 mA or so0) and you are ready to go.

To adapt the circuit to run off a battery, there are two options; either to use a +9-V box
battery or use four 1.5-V cells. If you want to use a +9-V box battery you could use a
TELO5 voltage regulator to get the +5-V supply voltage. The 78L05 voltage regulator
comes in a small TO-92 package and can be easily put on the same PCB as the dice.
However, since it requires a minimum voltage of +6.7 V to provide the +35-V output, it
cannot be used if you choose to use four 1.5-V cells. Using four cells of 1.5 V each will
give off +6 volts, and to get +5 V out of it you could use the LP2940 voltage regulator as
described in the earlier chapter on system design. You could also choose to drop the volt-
age to something close to +35 V with the help of two series diodes.

Once you put the required power supply in place, just punch away at the sample switch
and watch the dice roll off.

10.10 Power Consumption

As a portable utility, it will most probably be battery powered. The main concern with bat-
tery-powered devices is the power consumption, both while operating the device and when
the device is not in use. The idle and power-down features of the AVR. controllers come
in handy in minimizing the power usage, especially when the device is not in use
{Figure 10.10).

Team LRN

220 AVR PROJECT 1

__I__ >—pte

1.5V § %
78LOS @ &V
() — Vout-48v |
- 2

g +3V Valt=+5V
1.5V

I — ® Gnd
1.5Y

T ® Gnd

FIGURE 10.10 Possible sources of supply voltage for the dice circuit.

I measured the current consumption of the device when in use and when the device was
put in powered-down sleep mode.

VeC(V) ICC(MA) STATE
+5 285 All 7 LEDs lit
+5 1pA FPower-down sleep with all LEDs off.

However. the key to minimizing the current consumption during the power-down sleep
mode 15 not merely activating the power-down sleep mode in software, as | found out after
some efforts. The AVR ports (PORTB and PORTD in our case) if configured in high-Z
floating state or as inputs, consume quite some current (about 600 pA for both the ports)
even if the device is put in power-down sleep mode. To minimize this current consump-
tion, I had to configure both the ports as outputs and I set the state of all the port bits to
*17, which resulted in a 1-pA current consumption in power-down sleep mode, which is
really amazing.

10.11 Adapting the Circuit to an
AT90S2343

We have used a 20-pin AT9051200 processor for this project. The project actually requires
only four I/O pins—three for LED outputs and one for the sample switch input. This can
be easily provided by an 8-pin AT9052343 controller. However, the controller would need
to be programmed with its internal oscillator, Any AT9052343 could be used by program-
ming it appropriately with the help of a parallel programmer (the serial programming
methods cannot change the internal oscillator fuse bit).

The advantage of using an AT9052343 in the internal RC oscillator enabled mode is
that of reduced board space (an 8-pin DIP as opposed to a 20-pin DIP package) and com-
ponent count, as it would not need the crystal and associated capacitors.

Figure 10.11 illustrates the block diagram of the dice circuit using an AT9052343,
Porting the circuit would need modifications to the software. too. The sample switch is

Team LRN

ADAPTING THE CIRCUIT TO AN AT9052343 221

AST
- =

&—-

3
3_._|_

Sample

PB3

AT90S2343

FBO
PBE1
PB2

H /\/_. +5Y

+5V

M

FIGURE 10.11 Block diagram for the electronic dice using an AT9052343.

now connected to the PB2 and not PDO, as the 2343 does not have a PORTD. Secondly,
the software would need to initialize the stack pointer appropriately. The AT90S1200
processor has a hardware stack that allows up to three nested subroutines. The processors
in the AVE family other than the AT9051200 use a software stack {in the internal RAM
area). and so the stack pointer needs to be initialized. Once these changes are implement-
ed, an AT9082343 could well be used instead of the AT9051200.

Team LRN

Thiz page intentionally left blank.

Team LRN

