

Programming
Microcontrollers in C
Second Edition

Ted Van Sickle

A Volume in the EMBEDDED TECHNOLOGY TM Series

Eagle Rock, Virginia
www.LLH-Publishing.com

Programming Microcontrollers in C © 2001 by LLH Technology Publishing.
All rights reserved. No part of this book may be reproduced, in any form or means
whatsoever, without written permission from the publisher. While every precaution has
been taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions. Neither is any liability assumed for damages
resulting from the use of the information contained herein.

ISBN: 1-878707-57-4
Library of Congress Control Number: 00-134094

Printed in the United States of America
10 9 8 7 6 5 4 3 2 1

Project management and developmental editing:
Carol S. Lewis, LLH Technology Publishing

Interior design and production services:
Kelly Johnson, El Cajon, California

Cover design: Brian McMurdo, Valley Center, California

Visit us on the web: www.LLH-Publishing.com

1 Introduction to C ... 1

Some Simple Programs .. 1

Names ... 8

Types and Type Declarations ... 9

Storage Classes, Linkage, and Scope .. 12

Character Constants ... 15

Arrays.. 18

Other types.. 20

Operators and Expressions... 24

Increment and Decrement Operators.. 30

Precedence and Associativity ... 34

Program Flow and Control .. 36

Functions... 51

Recursion .. 61

Summary ... 63

2 Advanced C Topics ... 65

Pointers ... 65

Multidimensional Arrays .. 80

Structures .. 87

More Structures... 107

Input and Output ... 110

Memory Management ... 114

Miscellaneous Functions ... 116

Summary ... 121

3 What Are Microcontrollers? ... 123

Microcontroller Memory... 127

Input/ Output ... 129

Programming Microcontrollers .. 134

Coding Tips for Microcontrollers ... 137

4 Small 8- Bit Systems ... 149

Microcontroller Memory... 153

Timers ... 166

Analog- to- Digital Converter Operation .. 195

Pulse Width Modulator System... 201

Other Program Items... 207

Summary ... 209

5 Programming Large 8- Bit Systems 211

Header File.. 211

Sorting Programs .. 230

Data Compression .. 237

Timer Operations .. 245

Summary ... 285

6 Large Microcontrollers ... 287

The MC68HC16 .. 288

System Integration Module (SIM)... 296

A Pulse Width Modulation Program .. 299

Cosmic MC68HC16 Compiler ... 305

Table Look- Up.. 319

Digital Signal Processor Operations ... 326

Other MC68HC16 Considerations .. 345

7 Advanced Topics in Programming Embedded

Systems (M68HC12) .. 347

Numeric Encoding ... 352

Numeric Decoding... 354

Coding the alpha data ... 356

The Monitor Program .. 370

The SAVEIT() Routine .. 376

The printout() and the printafter() Functions 378

Reset... 381

Input/ Output Functions... 382

Putting It All Together.. 386

Summary ... 391

8 MCORE, a RISC Machine .. 393

Delay Routine.. 395

Delays Revisited ... 401

Serial Input/ Output ... 404

Handling Interrupts .. 413

A Clock Program ... 419

Keyboard ... 432

Integrating Keyboard and Clock.. 440

Adding a Display ... 442

Summary ... 446

Index .. 447

Introduction to Second Edition

Today, even more than when the first edition of this book was written,
the use of microcontrollers has expanded to an almost unbelievable level.
A typical car has 15 microcontrollers. A modern home can have more than
50 microcontrollers controlling everything from the thermostat, to the
furnace, to the microwave. Microcontrollers are everywhere! In the mean
time, many new chips have been placed on the market as well.

Also, there have been significant modifications to our programming
languages. The standard C language is now called C99 rather than C89.
There have been several changes in the language, but most of these
changes will not be available to us for some time. Many of the modifica
tions to the language will be of little use to programs for embedded
systems. For example, complex arithmetic has been added to the lan
guage. It is rare that we use even floating-point arithmetic, and I have
never seen an application for an embedded system where complex arith
metic was needed. However, other additions allow improved optimization
processes, such as the restrict keyword and the static keyword used to
modify the index of an array. Other changes have less impact on the
generation of code, such as the // opening to a single line comment. Also,
today you will have no implicit int return from a function. All in all,
expect the new versions of C compilers to be significant improvements
over the older versions. Also, expect that the new compilers will not break
older code. The features of the new standard should begin showing up in
any new version of the compilers that you use.

The C++ standard committee has completed its work on the first
language standard for C++. There is much clamor about the use of C++ for
embedded systems. C++ as it stands is an excellent language, but it is
aimed primarily at large system programs, not the small programs that we
will be developing into the future. C still remains the grand champion at
giving us embedded programmers the detailed control over the computer
that we need and that other computer languages seem to overlook.

The first six chapters of the book have been revised and any errors that
were found were corrected. Every chapter has been altered, but not so
much that you would not recognize it. Chapter 7 has been added. In that
chapter, a relatively complex program is developed to run on the
M68HC912B32. The development system was based on this chip and it
had no significant RAM to hold the code during development. Therefore,
all of the code was completely designed, coded, and tested on a DOS

vii

viii Introduction to Second Edition

based system. Extensive tests were completed to make certain that there
were no hidden bugs. The modules were small and easy to test. Each
module was tested with a program written to exercise all parts of the
module. When the several modules were integrated into a single program,
the program worked in the DOS-based system. All changes needed to
convert this program were implemented under the control of conditional
compiler commands. When the program was converted to the M68HC12
version and compiled, it loaded correctly and ran.

Chapter 8 introduces a new chip for Motorola, the MMC2001. This
chip is a RISC chip. Many of the good things to be said of RISC
configurations are absolutely true. This chip is very fast. Each of its
instructions requires only one word, 32 bits, of memory. Almost all
instructions execute in a single clock cycle. The chip that I used here ran at
32 mHz, and you could not feel any temperature rise on the chip. It is from
a great family of chips that should become a future standard.

The first edition of this book had several appendices. These were
needed to show general background material that the reader should not be
expected to know. Also, quite a few specialized header files used to
interconnect the program to the peripheral components on the
microcontroller were included. Also, with the first edition, there was a
card with which the reader could order two diskettes that contained all of
the source code in the book, demonstration compilers that would compile
the source code, and other useful information. All of these things have
been included on the CD-ROM that comes with this edition. Additionally,
you will find PDF versions of all appropriate Motorola data manuals and
reference manuals for all of the chips discussed in the book. Also included
are copies of all header files used with the programs, and some more that
will probably be useful to you.

Introduction to First Edition

Early detractors of the C language often said that C was little more
than an over-grown assembler. Those early disparaging remarks were to
some extent true and also prophetic. C is indeed a high level language and
retains much of the contact with the underlying computer hardware that is
usually lost with a high level language. It is this computer relevance that
makes people say that C is a transform of an assembler, but this computer
relevance also makes C the ideal high level language vehicle to deal with
microcontrollers. With C we have all of the advantages of an easily
understood language, a widely standardized language, a language where
programmers are readily available, a language where any trained program
mer can understand the work of another, and a language that is very
productive.

The main purpose of this book is to explore the use of C as a
programming tool for microcontrollers. We assume that you are familiar
with the basic concepts of programming. A background in C is not
necessary, but some experience with a programming language is required.
I have been teaching C programming for microcontrollers for several
years, and have found that my students are usually excellent programmers
with many years of experience programming microcontrollers in assembly
language. Most have little need or interest in learning a new language. I
have never had a class yet where I was able to jump into programming
microcontrollers without providing substantial background in the C lan
guage. In many instances, students believe that a high-level language like
C and microcontrollers are incompatible. This forces me, unfortunately, to
turn part of my class into a sales presentation to convince some students
that microcontrollers and C have a future together. I am usually able to
show that the benefits gained from using C far outweigh the costs attrib
uted to its use. The first two chapters are included for those who are
unfamiliar with C. If you are already familiar with C, feel free to skip
ahead to Chapter 3.

C is a very powerful high level language that allows the programmer
access to the inner workings of the computer. Access to computer details,
memory maps, register bits, and so forth, are not usually available with
high level languages. These features are hidden deliberately from the
programmer to make the languages universal and portable between ma
chines. The authors of C decided that it is desirable to have access to the
heart of the machine because it was intended to use C to write operating
systems. An operating system must be master of all aspects of the machine

ix

x Introduction to First Edition

it is controlling. Therefore, no aspect of the machine could be hidden from
the programmer. Features like bit manipulation, bit field manipulation,
direct memory addressing, and the ability to manipulate function ad
dresses as pointers have been included in C. All of these features are used
in programming microcontrollers. In fact, C is probably the only popular
high level language that can be conveniently used for a microcontroller.

Every effort has been made to present the C aspects of programming
these machines clearly. Example programs and listings along with their
compiled results are presented whenever needed. If there are problems
hidden in the C code, these problems are explored and alternate methods
of writing the code are shown. General rules that will result in more
compact code or quicker execution of the code are developed. Example
programs that demonstrate the basis for these rules will be shown.

C is a rich and powerful language. Beyond the normal high level
language capability, C makes extensive use of pointers and address indi
rection that is usually available only with assembly language. C also
provides you with a complete set of bit operations, including bit manipula
tions and bit fields in addition to logical bit operations. In C, the program
mer knows much about the memory map which is often under program
mer control. A C programmer can readily write a byte to a control register
of a peripheral component to the computer. These assembly language-like
features of the C language serve to make C the high level language of
choice for the microcontroller programmer.

As a language, C has suffered many well-intended upgrades and
changes. It was written early in the 1970s by Dennis Ritchie of Bell
Laboratories. As originally written, C was a “free wheeling” language
with few constraints on the programmer. It was assumed that any pro
grammer using the language would be competent, so there was little need
for the controls and hand-holding done by popular compilers of the day.
Therefore, C was a typed language but it was not strongly typed. All
function returns were assumed to be integer unless otherwise specified.
Function arguments were typed, but these types were never checked for
validity when the functions were called. The programmer could specify an
integer argument and then pass a floating point number as the argument.
These kinds of errors are made easily by the best programmer, and they
are usually very difficult to find when debugging the program.

Another set of problems with the language was the library functions
that always accompanied a compiler. No standard library was specified. C
does not have built-in input/output capability. Therefore, the basic C
standard contained the specifications for a set of functions needed to
provide sensible input/output to the language. A few other features such as
a math library, a string handling library, and so forth started out with the

xi Introduction to First Edition

language. But these and other features were included along with other
enhancements in a helter-skelter manner in different compilers as new
compiler versions were created.

In 1983, an ANSI Committee (The X3J11 ANSI C Standards Com
mittee) was convened to standardize the C language. The key results of the
work of this committee has been to create a strongly typed language with a
clear standard library. One of the constraints that the ANSI committee
placed upon itself was that the existing base of C code must compile error
free with an ANSI C compiler. Therefore, all of the ANSI dictated typing
requirements are optional under an ANSI C compiler. In this text, it is
always assumed that an ANSI compliant compiler will be used, and the
ANSI C form will be used throughout.

C compilers for microcontrollers—especially the small devices—
must compromise some of the features of a compiler for a large computer.
The small machines have limited resources that are required to implement
some of the code generated by a compiler for a large computer. When the
computer is large, the compiler writer need not worry about such problems
as limited stack space or a small register set. But when the computer is
small, these limitations will often force the compiler writer to take extraor
dinary steps just to be able to have a compiler. In this book, we will
discuss the C programming language, not an abbreviated version that you
might expect to use with some of the smaller microcontrollers. In the
range of all microcontrollers, you will find components with limited
register sets, memory, and other computer necessary peripherals. You will
also find computers with many megabytes of memory space, and all of the
other important computer features usually found only on a large computer.
Therefore, we will discuss the language C for the large computer, and
when language features must be abbreviated because of computer limita
tions, these points will be brought out.

All of the programs found in this book have been compiled and tested.
Usually source code that has been compiled has been copied directly from
computer disks into the text so that there should be few errors caused by
hand copying of the programs into the text. The compilers used to test
these programs are available from Byte Craft Ltd. of Hamilton, Ontario,
Canada (for the MC68HC05) and Intermetrics of Cambridge, Massachu
setts (for the MC68HC11 and MC68HC16). If you wish to develop
serious programs for any of these microcontrollers, you should purchase
the appropriate compiler from the supplier.

How does one partition a book on C programming for microcontrollers?
First, the text must contain a good background on the C language. Second,
it is necessary to include a rather extensive background on some
microcontrollers. Finally, C must be used to demonstrate the creation of
code for the specified microcontrollers. This approach is used here. The C

