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Relative formation control of mobile agents
K. D. Do

Abstract

A constructive method is presented to design bounded and continuous cooperative controllers
that force a group of N mobile agents with limited sensing ranges to stabilize at a desired location,
and guarantee no collisions between the agents. The control development is based on new general
potential functions, which attain the minimum value when the desired formation is achieved, are
equal to infinity when a collision occurs, and are continuous at switches. The multiple Lyapunov
function (MLF) approach is used to analyze stability of the closed loop switched system.

Index Terms

Formation stabilization, bounded control, multiple Lyapunov function, switched system.

I. INTRODUCTION

Technological advances in communication systems and the growing ease in making small,
low power and inexpensive mobile agents make it possible to deploy a group of networked
mobile vehicles to offer potential advantages in performance, redundancy, fault tolerance,
and robustness. Formation control of multiple agents has received a lot of attention from
both robotics and control communities. Basically, formation control involves the control of
positions of a group of the agents such that they stabilize/track desired locations relative to
reference point(s), which can be another agent(s) within the team, and can either be stationary
or moving. Three popular approaches to formation control are leader-following (e.g. [1],
[2]), behavioral (e.g. [3], [4]), and use of virtual structures (e.g. [5], [6]). Most research
works investigating formation control utilize one or more of these approaches in either a
centralized or decentralized manner. Centralized control schemes, see e.g. [2] and [7], use a
single controller that generates collision free trajectories in the workspace. Although these
guarantee a complete solution, centralized schemes require high computational power and are
not robust due to the heavy dependence on a single controller. On the other hand, decentralized
schemes, see e.g. [8], [9] and [10], require less computational effort, and are relatively more
scalable to the team size. The decentralized approach usually involves a combination of
agent based local potential fields ([2], [10], [11]. The main problem with the decentralized
approach, when collision avoidance is taken into account, is that it is extremely difficult to
predict and control the critical points (the controlled system often has multiple equilibrium
points). It is difficult to design a controller such that all the equilibrium points except for
the desired equilibrium ones are unstable points. Recently, a method based on a different
navigation function from [12] provided a centralized formation stabilization control design
strategy is proposed in [9]. This work is extended to a decentralized version in [13]. However,
the navigation function approaches a finite value when a collision occurs, and the formation
is stabilized to any point in workspace instead of being ”tied” to a fixed coordinate frame.
In [14], [12], [9] and [13], the tuning constants, which are crucial to guarantee that the only
desired equilibrium points are asymptotic stable and that the other critical points are unstable,
cannot be obtained explicitly but ”are chosen sufficiently small”. When it comes to a practical
implementation, an important issue is ”how small these constants should be?” Moreover, the
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control design methods ([2], [15], [10]) based on the potential/navigation functions that are
equal to infinity when a collision occurs exhibit very large control efforts if the agents are
close to each other. Hence, a bounded control is called for. These problems motivate the work
in this paper.

In this paper, we design bounded and continuous cooperative controllers for formation
stabilization of a group of mobile agents with limited sensing ranges. New general contin-
uous potential functions are constructed to design the controllers that yield (almost) global
asymptotic convergence of a group of mobile agents to a desired formation, and guarantee
no collisions among the agents. Continuity of the potential functions at switches significantly
simplifies stability analysis of the controlled (switched) system based on the MLF approach
[19]. Moreover, the controlled system exhibits multiple equilibrium points due to collision
avoidance taken into account. We therefore investigate the behavior of equilibrium points by
linearizing the closed loop system around those points, and show that critical points, other
than the desired point for an agent, are unstable.

II. PROBLEM STATEMENT

We consider a group of N mobile agents, of which each has the following dynamics

q̇i = ui, i = 1, ..., N (1)

where qi ∈ Rn and ui ∈ D ⊂ Rn are the state and control input of the agent i. We assume that
n > 1 and N > 1. In this paper, we treat each agent as an autonomous point. This assumption
is not as restrictive as it may seem since various shapes can be mapped to single points through
a series of transformations as shown in seminal papers [14], [12], [7]. Our task is to design the
bounded control input ui for each agent i that forces the group of N agents to stabilize with
respect to their group members in configurations that make a particular formation specified
by a desired vector l̄(η) = [lT12(η), l

T
13(η), ..., l

T
1N(η), lT23(η), l

T
24(η), ..., l

T
2N(η), ..., lTN−1,N(η)]T ,

where η is the formation parameter vector, while avoiding collisions between themselves. The
parameter vector η is used to specify rotation, expansion and contraction of the formation such
that when η converges to its desired value ηf , the desired shape of the formation is achieved.
In addition, it requires all the agents align their velocity vectors to a desired bounded one ud

, and move toward specified directions specified by the desired formation velocity vector ud.
Finally, the collision avoidance between the agents are to be taken into account only when
they are in their proximity to eliminate unnecessary control effort. The control objective is
formally stated as follows:

Control objective: Assume that at the initial time t0 each agent initializes at a different
location, and that each agent has a different desired location, i.e. there exist strictly positive
constants ε1, ε2, ε3, and a nonnegative constant uM

d such that for all (i, j) ∈ {1, 2, ..., N}, i 6=
j, t ≥ t0 ≥ 0:

‖qi(t0)− qj(t0)‖ ≥ ε1, ‖lij(η(t)‖ ≥ ε2,

∥∥∥∥∂lij(η)∂η

∥∥∥∥ ≤ ε3, ‖ud(t)‖ ≤ uM
d . (2)

Design the bounded control input ui for each agent i , and an update law for the formation
parameter vector η such that each agent (almost) globally asymptotically approaches its
desired location to form a desired formation, and that the agents’ velocity converges to the
desired (bounded) velocity ud while avoiding collisions with all other agents in the group,



i.e. for all (i, j) ∈ {1, 2, ..., N}, i 6= j, t ≥ t0 ≥ 0:

limt→∞(qi(t)− qj(t)− lij) = 0,
‖qi(t)− qj(t)‖ ≥ ε4,
limt→∞(ui(t)− ud) = 0,
limt→∞(η(t)− ηf ) = 0,
‖ui(t)‖ ≤ uM

i

(3)

where uM
i and ε4 are strictly positive constants. The constant uM

i is such that uM
i ≥ uM

d + ε5
with ε5 being a strictly positive constant. Moreover, the control ui takes the collision avoidance
with other agents in the group into account only when these agents are in the proximity of
the agent i, i.e. in a sphere, which is centered at the agent i and has a radius of Ri.

III. CONTROL DESIGN

For each agent i, we consider the following potential function

ϕi = γi + βi +
1

2
‖η − ηf‖2 (4)

where γi and βi are the goal and related collision avoidance functions for the agent i specified
as follows:
-The goal function γi is designed such that it puts penalty on the stabilization error for the
agent i, and is equal to zero when the agent is at its desired position with respect to all other
agents in the group. A simple choice of this function is

γi =
∑
j∈Ni

‖qij − lij‖2 (5)

where qij = qi − qj and Ni is the set that contains all the agents in the group except for the
agent i.
-The related collision function βi should be chosen such that it is equal to infinity whenever
any agents come in contact with the agent i , i.e. a collision occurs, and attains the minimum
value when the agent i is at its desired location with respect to other group members belong
to the set Ni agents. This function is chosen as follows:

βi =
∑
j∈Ni

(aijβij) (6)

where aij is the switching parameter, which determines the collisions between the agent i
and the agent j are taken into account only if they are in their proximities. The switching
rule for aij is specified as:

aij = 1 if ‖qij‖ ≤ Rij,
aij = 0 if ‖qij‖ > Rij

(7)

where Rij is a strictly positive constant, and is such that Rij ≤ min(Ri, Rj). The function
βij is a function of ‖qij‖2/2, ‖lij‖2/2 and R2

ij/2, and enjoys the following properties:

1) βij = 0 if ‖qij‖ = ‖lij‖ or ‖qij‖ = Rij,

2) βij > 0 if ‖qij‖ 6= ‖lij‖ and ‖qij‖ 6= Rij,

3) βij

∣∣
‖qij‖=0

= ∞,

4) β′ij
∣∣
‖qij‖=‖lij‖

= 0, β′′ij
∣∣
‖qij‖=‖lij‖

≥ 0,

5)
∥∥ ∂βij

∂(‖lij‖2/2)
lij

∥∥ ≤ ε5βij + ε6 (8)



where β′ij = ∂βij/∂(‖qij‖2/2) and β′′ij = ∂2βij/∂(‖qij‖2/2)2, ε5 and ε6 are nonnegative
constants. It is noted that βij = βji.

Remark 1: Properties 1), 2) and 3) of βij imply that the function βi (so the function ϕi

defined in (4) with the function γi given in (5)) is positive definite and is equal to infinity
when a collision between any agents in the group occurs. In addition, Properties 1) and 2) of
βij ensure that the function ϕi is continuous when the switching parameter aij is switched
according to the switching rule (7). As it will be seen in the proof of Theorem 1, continuity
of ϕi significantly simplifies stability analysis of the closed loop switched system using the
MLF approach. Property 4) of βij and the function γi given in (5) ensure that the function
attains the (unique) minimum value of zero when all the agents are at their desired positions.
Property 5) of βij is needed to prove existence of the solutions of the closed loop system
(see proof of Theorem 1).

There are many functions that satisfy all Properties 1)-5) given in (8) such as

βij =

(
‖qij‖2/2

(‖lij‖2/2)2
+

1

(‖qij‖2/2)
− 2

(‖lij‖2/2)

)
(‖qij‖2/2−R2

ij/2)2 (9)

and
βij =

(‖qij‖2/2− ‖lij‖2/2)2

(‖qij‖2/2)
(‖qij‖2/2−R2

ij/2)2. (10)

The derivative of ϕi between the switching intervals (since the function ϕi is continuous
(though nonsmooth), the gradient ∇qij

ϕi is empty at ‖qij‖ = Rij , see ([10])), along the
solutions of (1) satisfies

ϕ̇i =
∑
j∈Ni

(qij − lij + aijβ
′
ijqij)

T (ui − uj) + Φiη̇ + (η − ηf )
T η̇ (11)

where
Φi =

∑
j∈Ni

[
− (qij − lij) + aij

∂βij

∂(‖lij‖2/2)
lij

]T ∂lij
∂η

. (12)

Adding and subtracting ud to (ui − uj) in the right hand side of (11) results in

ϕ̇i =
∑
j∈Ni

(qij − lij + aijβ
′
ijqij)

T (ui − ud − (uj − ud)) + Φiη̇ + (η − ηf )
T η̇

= ΩT
i (ui − ud)−

∑
j∈Ni

(qij − lij + aijβ
′
ijqij)

T (uj − ud) + Φiη̇ + (η − ηf )
T η̇ (13)

where
Ωi =

∑
j∈Ni

(qij − lij + aijβ
′
ijqij). (14)

From (13), we simply choose the control ui and the update law for η as follows

ui = −CΨi(Ωi) + ud,

η̇ = −Γ(η − ηf ) (15)

where C = In×nc with In×n being the n dimensional identity matrix and c being a positive
constant, Γ is a symmetric positive definite matrix, and Ψi(Ωi) denotes a vector of bounded
functions of elements of Ωi in the sense that

Ψi(Ωi) =
[
ψi(Ω

1
i ) ψi(Ω

2
i ), ..., ψi(Ω

h
i ), ...., ψ(Ω

n
i )

]T (16)



where Ωh
i is the hth element of Ωi, i.e. Ωi = [Ω1

i Ω2
i ...Ω

h
i ...Ω

n
i ]T . The function ψi(Ω

h
i ) is a

smooth, class-K, and bounded function of Ωh
i , which satisfies the following properties

1) |ψi(Ω
h
i )| ≤ ψM

i ,∀Ωh
i ∈ R,

2) ψi(Ω
h
i ) = 0 if Ωh

i = 0,

3) Ωh
i ψi(Ω

h
i ) > 0 if Ωh

i 6= 0,

4) ∂ψi(Ω
h
i )/∂Ωh

i

∣∣
Ωh

i =0
= 1 (17)

where ψM
i is a strictly positive constant. Some functions that satisfy all properties listed in

(17) are arctan(Ωh
i ), tanh(Ωh

i ), and Ωh
i /

√
1 + Ωh

i . Indeed, the control ui is a bounded one
in the sense that ‖ui(t)‖ ≤ c

√∑n
i=1(ψ

M
i )2 + uM

d := uM
i ,∀t ≥ t0 ≥ 0.

Remark 2: When Ωi defined in (14) is substituted into the control ui in (15) and the negative
sign is moved to inside of the bounding function Ψi, we can see that the argument of the
bounding function of the hth element of the control consists of two parts: −

∑
j∈Ni

(qh
ij − lhij)

and −
∑

j∈Ni
(aijβ

′
ijq

h
ij) with qh

ij and lhij being the hth elements of qij and lij . The first part,
−

∑
j∈Ni

(qh
ij − lhij), referred to as the attractive force plays the role of forcing the agent i

to its desired relative location with respect to the agent j defined by lij . On the other hand,
the second part, −

∑
j∈Ni

(aijβ
′
ijq

h
ij) referred to as the repulsive force, takes care of collision

avoidance for the agent i with the other agents in the group when it is necessary. Interestingly,
the second part can also be viewed as the gyroscopic force ([16]) to steer the agent i away
from its group members when it is too close to them.

Remark 3: When min(Ri, Rj) ≥ ‖lij‖, the switching rule (7) should not be exactly
performed at ‖qij‖ = ‖lij‖ because it will be shown later that the distance between the
agents i and j approaches ‖lij‖ as the time tends to infinity with the help of the proposed
control. Consequently, if the switching rule is performed at ‖qij‖ = ‖lij‖ it will cause many
switches in the switching parameter aij (so in the control ui ) when the controlled system
is perturbed by an arbitrarily small noise. Therefore, when the switching rule (7) should be
performed at ‖qij‖ = ‖lij‖+ %ij or at ‖qij‖ = ‖lij‖ − %ij with %ij a strictly positive constant
and strictly smaller than ‖lij‖.

Now substituting the control ui given in (15) into (13) results in

ϕ̇i = ΩT
i Ψi(Ωi)−

∑
j∈Ni

(qij− lij +aijβ
′
ijqij)

T (uj−ud)+Φi(η−ηf )− (η−ηf )
T Γ(η−ηf ). (18)

On the other hand, substituting the control ui given in (15) into (1) results in the closed
loop system

q̇i = −CΨi(Ωi) + ud, i = 1, ..., N,

η̇ = −Γ(η − ηf ). (19)

We now state the main result of our paper in the following theorem whose proof is given in
the next section.

Theorem 1: Under the conditions specified in (2), the bounded controls ui, i = 1, ..., N,
and the adaptation rule for η given in (15) with the parameters aij chosen according to the
switching rule (7) guarantee that no collisions between any agents can occur, the solutions of
the closed loop system (19) exist, and the agents are globally asymptotically stabilized with



respect to their group members in configurations that make a particular formation specified
by the desired vector l̄(ηf ) = [lT12(ηf ), l

T
13(ηf ), ..., l

T
1N(ηf ), l

T
23(ηf ), ..., l

T
2N(ηf ), ..., l

T
N−1,N(ηf )]

T ,
except for the set of measure zero defined in (2). The controls ui, i = 1, ..., N, take the collision
avoidance between the agents into account only when the agents are in their proximity. In
addition, all the agents align their velocity vectors to the desired formation velocity vector
ud.

IV. STABILITY ANALYSIS: PROOF OF THEOREM 1
Proof. For proof of Theorem 1, we use the following total potential function

ϕ =
1

2

N∑
i=1

ϕi (20)

whose derivative along the solutions of (18) is

ϕ̇ = −
N∑

i=1

ΩT
i CΨi(Ωi) +

N∑
i=1

(
Φi(η − ηf )− (η − ηf )

T Γ(η − ηf )
)
. (21)

Since the switching parameter aij obeys the switching rule (7), the control ui is a switching
control. Hence the closed loop system (19) is a switched system. We will use the MLF
approach to analyze stability of (19) based on (21). Let tk, k = 1, 2, ... be the switching times
(i.e. when aij changes its value between 1 and 0, and vice versa). Let ϕσk

(tkd
) be the value of

the function ϕ in the interval [tk, tk+1), i.e. tk ≤ tkd
< tk+1. Since the function βij is zero at

the switching times (i.e. when ‖qij‖ = Rij), the values of the function ϕσk
(tk) and ϕσk−1

(tk)
coincide at each switching time . This means that ϕ (we slightly abuse the notation, i.e. use ϕ
instead of ϕσk

(tk) for clarity) is a continuous Lyapunov function candidate. Therefore, using
the stability results of a switched system based on the MLF approach (see [17], Chapter 3) we
just need to investigate stability properties of the closed loop system (19) under a fixed N∗

i ,
with N∗

i is the subset of Ni such that if j ∈ N∗
i then aij = 1. We first prove that no collisions

between the agents can occur and that the agents are asymptotically stabilized at the desired
or some critical configurations. Next, to investigate stability of the closed loop system (19)
at these configurations, we linearize the closed loop system at these configuration. The direct
Lyapunov method is then used to prove that only desired configuration is (unique) asymptotic
stable and that other critical configurations are unstable.

+Proof of no collisions and existence of solutions
We first show that ϕ(t) exists for all t ≥ t0 ≥ 0 by considering the following potential
function

ϕ̄ = log(1 + ϕ) +
1

2
‖η − ηf‖2 (22)

whose derivative along the solutions of the second equation of (19) and (21) satisfies

˙̄ϕ ≤ 1

1 + ϕ

N∑
i=1

(
Φi(η − ηf )

)
− λmin(Γ)‖η − ηf‖2 (23)

where λmin(Γ) is the minimum eigenvalue of Γ. On the other hand, from Property 5) of βij

and the expressions of Φi and ϕ, see (8), (12) and (20), there exist nonnegative constants ξ1
and ξ2 such that ∥∥∥ N∑

i=1

Φi

∥∥∥ ≤ ξ1ϕ+ ξ2. (24)



Using (24), we can write (23) as

˙̄ϕ ≤ (ξ1 + ξ2)
2

4λmin(Γ)
(25)

which means that ϕ̄(t) , so ϕ(t), exists for all t ≥ t0 ≥ 0. From the second equation of (19),
we have

‖η(t)− ηf‖ ≤ ‖η(t0)− ηf‖e−λmin(Γ)(t−t0) (26)

which implies that the desired formation shape is globally exponentially achieved. Now using
(26) and (24), we can write (21) as

ϕ̇ ≤ (ξ1ϕ+ ξ2)‖η(t0)− ηf‖e−λmin(Γ)(t−t0) (27)

which implies that

ϕ(t) ≤ (ϕ(t0) + ξ2/ξ1)e
ξ1‖η(t0)−ηf‖/λmin(Γ) := ϕM . (28)

Substituting the expression of ϕ and ϕi given in (20) and (4) into (28) results in

0.5
(
γi(t) + βi(t) + 0.5‖η(t)− ηf‖

)
≤(

0.5(γi(t0) + βi(t0) + 0.5‖η(t0)− ηf‖) + ξ2/ξ1

)
eξ1‖η(t0)−ηf‖/λmin(Γ). (29)

Recalling from (6) that βi =
∑

j∈Ni
(aijβij) =

∑
j∈N∗i

βij . Therefore if N∗
i is empty, then there

are no collisions since all aij = 0, i.e. ‖qij‖ > Rij . On the other hand, if N∗
i is nonempty,

from (2) and (8) we have βij(t0) is larger than some strictly positive constant. Therefore
the right hand side of (29) is bounded by some positive constant depending on the initial
conditions. Boundedness of the right hand side of (29) implies that the left hand side of (29)
must be also bounded. As a result, βij(t) must be larger than some strictly positive constant
for all t ≥ t0 ≥ 0. From properties of βij , see (8), ‖qij(t)‖ must be larger than some strictly
positive constant denoted by ε4 , i.e. there are no collisions for all t ≥ t0 ≥ 0. Boundedness
of the left hand side of (29) also implies that of ‖qij(t)‖ for all t ≥ t0 ≥ 0. This readily
implies that the solutions of the closed loop system (19) exist, since Ωi is a function of qij, lij
and ud, see (14). Now using (28) and (24), we can write (21) as

ϕ̇ ≤ −
N∑

i=1

ΩT
i CΨi(Ωi) + (ξ1ϕ

M + ξ2)‖η(t0)− ηf‖e−λmin(Γ)(t−t0) (30)

where ϕM is defined in (28). Applying Barbalat’s lemma found in [18] to (30) yields

lim
t→∞

ΩT
i (t)CΨi(Ωi(t)) = 0,∀i = 1, 2, ..., N. (31)

Thanks to Property 2) of the function ψi, see (17), the limit equation (31) implies that

lim
t→∞

Ωi(t) = lim
t→∞

[ ∑
j∈Ni

(qij(t)− lij) +
∑
j∈N∗i

β′ij(t)qij(t)
]

= 0,∀i = 1, 2, ..., N. (32)

The limit equation (32) implies that qij(t) tends to lij(ηf ) or some constant vector qijc as the
time goes to infinity. The constant vector qijc is such that∑

j∈Ni

(qijc − lij) +
∑
j∈N∗i

β′ijcqijc = 0. (33)

Next, we will show that the desired configuration specified by l̄(ηf ) = [lT12(ηf ), l
T
13(ηf ), ...,

lT1N(ηf ), l
T
23(ηf ), l

T
24(ηf ), ..., l

T
2N(ηf ), ..., l

T
N−1,N(ηf )]

T is asymptotically stable, and that the crit-
ical configuration specified by q̄c = [qT

12c, q
T
13c, ..., q

T
1Nc, q

T
23c, q

T
24c, ..., q

T
2Nc, ..., q

T
N−1,Nc]

T is un-
stable by linearizing the closed loop system (19) at these configurations. Since we are



investigating properties of the closed loop system (19) at the aforementioned configurations
as the time tends to infinity, it is sufficient to assume that the formation parameter η is
already equal to ηf . Moreover, since the aforementioned configurations are specified in terms
of relative distances between the agents, it is much convenient to look at the inter-agent closed
loop system derived from the closed loop system (19) as

˙̄q = −C̄F̄ (q̄) (34)

where q̄ = [qT
12, q

T
13, ..., q

T
1N , q

T
23, q

T
24, ..., q

T
2N , ..., q

T
N−1,N ]T , C̄ = diag(C, ..., C), and F̄ (q̄) =[

ΨT
1 (Ω1)−ΨT

2 (Ω2),Ψ
T
1 (Ω1)−ΨT

3 (Ω3), ...,Ψ
T
1 (Ω1)−ΨT

N(ΩN),ΨT
2 (Ω2)−ΨT

3 (Ω3), ...,Ψ
T
2 (Ω2)−

ΨT
N(ΩN), ...,ΨT

N−1(ΩN−1)−ΨT
N(ΩN)

]T . Linearizing the inter-agent closed loop system (34)
at q̄o, which can be either l̄(ηf ) or q̄c results in

˙̄q = −C̄∂F̄ (q̄)/∂q̄
∣∣
q̄=q̄o

(q̄ − q̄o) (35)

where

∂F̄ (q̄)

∂q̄
=


∆12

12 ∆13
12 · · · · · · ∆N−1,N

12
... . . . ...

...
...

∆12
ij · · · ∆ij

ij · · · ∆N−1,N
ij

...
...

... . . . ...
∆12

N−1,N · · · · · · · · · ∆N−1,N
N−1,N

 (36)

with ∆hk
ij = ∂Ψi(Ωi)

∂Ωi

∂Ωi

∂qhk
− ∂Ψj(Ωj)

∂Ωj

∂Ωj

∂qhk
, (i, j) ∈ (1, ..., N), i 6= j, and (h, k) ∈ (1, ..., N), h 6= k.

We now investigate properties of l̄(ηf ) and q̄c based on (36).

- Proof of l̄(ηf ) being asymptotic stable: Consider the following Lyapunov function can-
didate

Vl̄ =
1

2
(q̄ − l̄)T (q̄ − l̄) (37)

whose derivative along the solutions of (35) with q̄o replaced by l̄(ηf ) satisfies

V̇l̄ = −N(N − 1)

2
(q̄ − l̄)T (q̄ − l̄)− N(N − 1)

4

N∑
i=1

∑
j∈N∗i

β′′ijl
(
lTij(qij − lij)

)2 (38)

where β′′ijl = β′′ij
∣∣
‖qij‖=‖lij‖

, and we have used Property 4) of βij , see (8), i.e. β′ijl = 0,
with β′ijl = β′ij

∣∣
‖qij‖=‖lij‖

. Furthermore, from Property 4) of βij , see (8), we have β′′ijl ≥ 0.
Substituting β′′ijl ≥ 0 into (38) gives

V̇l̄ ≤ −N(N − 1)

2
(q̄ − l̄)T (q̄ − l̄) (39)

which together with (37) imply that l̄(ηf ) is asymptotically stable.

- Proof of q̄c being unstable: Consider the following Lyapunov function candidate

Vq̄c =
1

2
(q̄ − q̄c)

T (q̄ − q̄c) (40)



whose derivative along the solutions of (35) with q̄o replaced by q̄c satisfies

V̇q̄c = −N(N − 1)

4

N∑
i=1

∑
j∈Ni

(qij − qijc)
T
(
In×n + aijβ

′
ijcIn×n + aijβ

′′
ijcqijcq

T
ijc

)
(qij − qijc),

= −N(N − 1)

4

N∑
i=1

[ ∑
j∈Ni

(qij − qijc)
T
(
In×n + aijβ

′
ijcIn×n

)
(qij − qijc) +

∑
j∈N∗i

β′′ijc(q
T
ijc(qij − qijc))

2

]
. (41)

Now defining Ω̄ =
[
ΩT

1 −ΩT
2 ,Ω

T
1 −ΩT

3 , ...,Ω
T
1 −ΩT

N ,Ω
T
2 −ΩT

3 , ...,Ω
T
2 −ΩT

N , ...,Ω
T
N−1−ΩT

N

]T ,
we have Ω̄c = Ω̄

∣∣
q̄=q̄c

= 0. Multiplying both sides of Ω̄c = 0 with q̄T
c results in q̄T

c Ω̄c = 0.
From the expression of Ω̄ with q̄ replaced by q̄c, we expand q̄T

c Ω̄c = 0 to
N∑

i=1

∑
j∈Ni

[
qT
ijc(qijc−lij)+aijβ

′
ijcq

T
ijcqijc

]
= 0 =⇒

N∑
i=1

∑
j∈Ni

[
(1+aijβ

′
ijc)q

T
ijcqijc

]
=

N∑
i=1

∑
j∈Ni

(qT
ijclij).

(42)
The sum

∑N
i=1

∑
j∈Ni

(qT
ijclij) is strictly negative since at the point F where qij = lij, ∀(i, j) ∈

{1, ..., N}, i 6= j all attractive and repulsive forces are equal to zero while at the point
C where qij = qijc ∀(i, j) ∈ {1, ..., N}, i 6= j the sum of attractive and repulsive forces
are equal to zero (but attractive and repulsive forces are nonzero). Therefore the point O
where qij = 0, ∀(i, j) ∈ {1, ..., N}, i 6= j must locate between the points F and C for
all (i, j) ∈ {1, ..., N}, i 6= j . That is there exists a strictly positive constant b such that∑N

i=1

∑
j∈Ni

(qT
ijclij) ≤ −b. Substituting

∑N
i=1

∑
j∈Ni

(qT
ijclij) ≤ −b into (42) gives

N∑
i=1

∑
j∈Ni

[
(1 + aijβ

′
ijc)q

T
ijcqijc

]
≤ −b (43)

which implies that there must be at least one pair (i∗, j∗) ∈ {1, ..., N}, i∗ 6= j∗ such that

1 + ai∗j∗β
′
i∗j∗c ≤ −b∗ (44)

where b∗ is a strictly positive constant, and indeed ai∗j∗ = 1. We now write (41) as

V̇q̄c = −N(N − 1)

4

[
(qi∗j∗ − qi∗j∗c)

T (1 + ai∗j∗β
′
i∗j∗c)(qi∗j∗ − qi∗j∗c) +

N∑
i=1,i6=i∗

∑
j∈Ni,j 6=j∗

(qij − qijc)
T
(
In×n + aijβ

′
ijcIn×n

)
(qij − qijc) +

N∑
i=1

∑
j∈N∗i

β′′ijc(q
T
ijc(qij − qijc))

2

]
. (45)

Define a subspace such that in this subspace qij = qijc,∀(i, j) ∈ {1, ..., N}, i 6= i∗, j 6= j∗, i 6=
j and qT

ij(qij − qijc) = 0, ∀(i, j) ∈ {1, ..., N}, i 6= j. Therefore in this subspace, we have
from (40) and (45) that

Vq̄c =
1

2
(qi∗j∗ − qi∗j∗c)

T (qi∗j∗ − qi∗j∗c),

V̇q̄c = −N(N − 1)

4
(qi∗j∗ − qi∗j∗c)

T (1 + ai∗j∗β
′
i∗j∗c)(qi∗j∗ − qi∗j∗c),

≥ b∗N(N − 1)

4
(qi∗j∗ − qi∗j∗c)

T (qi∗j∗ − qi∗j∗c) (46)



where we have used (44). The set of equations in (46) clearly imply that q̄c is unstable. Proof
of Theorem 1 is completed.
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