R. Nieder D.K. Benbi

Carbon and Nitrogen in the Terrestrial Environment

Carbon and Nitrogen in the Terrestrial Environment

Carbon and Nitrogen in the Terrestrial Environment

R. Nieder and D.K. Benbi

R. Nieder Institut für Geoökologie Technische Universität Braunschweig Braunschweig Germany D.K. Benbi Department of Soils Punjab Agricultural University Ludhiana India

ISBN 978-1-4020-8432-4 e-ISBN 978-1-4020-8433-1

Library of Congress Control Number: 2008927744

© 2008 Springer Science + Business Media B.V.

No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work.

Cover image © 2008 JupiterImages Corporation

Printed on acid-free paper

987654321

springer.com

Preface

One of the biggest reality before us today is the global climate change resulting from the emission of greenhouse gases (GHGs). There has been an unprecedented increase in the concentration of carbon and nitrogen containing GHGs in the atmosphere, resulting primarily due to intervention in terrestrial carbon (C) and nitrogen (N) cycles by human beings. Two anthropogenic activities viz. food production and energy production are mainly responsible for perturbation of C and N cycles. If drastic remedial measures are not taken, the concentration of GHGs is projected to increase further. According to Kyoto Protocol, industrial countries are to reduce their emissions of GHGs by an average of 5% below their 1990 emissions by the first commitment period, 2008–2012. Therefore, there is an increased focus to look for options for mitigating the emission of GHGs. Terrestrial C sequestration through biotic processes is being viewed as a plausible option of reducing the rates of CO_2 emissions while abiotic processes of carbon storage and alternatives to fossil fuel take effect.

The importance of the C and N transfer from soils to the atmosphere lies not only in global warming, but also on soil quality and the potential of soils to perform ecosystems functions some of which are related to the three major international conventions on Biodiversity, Desertification, and Climate Change. Soil organic matter (SOM) being the main reservoir of C of the continental biosphere, can either be a source of CO_2 during mineralization or a sink if C sequestration is favored. During the last two centuries, soils have lost a considerable amount of C due to land use changes and expansion of agriculture. These losses from soils are clearly of concern in relation to future productivity and environment. To ensure sustainable management of land, it is imperative that organic matter in the soil is maintained and sustained at satisfactory levels through improved management practices.

As pool changes of C and N are often very slow, and the full impact of a change in land management practice may take decades to become apparent, long-term perspectives are required. The cycling of C and N is intimately linked and the two cannot be studied effectively separately. This necessitates a thorough understanding of the interdependent and dynamic pools and processes of C and N in the terrestrial ecosystem. Models could help in formulating or assessing land use strategies, generating scenarios for optimizing SOM conditions and minimizing emissions and upscaling research findings at different levels of spatial and temporal aggregation. Development and use of models require a comprehensive knowledge about several interdisciplinary processes.

Most of the currently available books on C and N cycling either deal with a single element of an ecosystem, or are limited to one or a few selected aspects. This book fills the gap by presenting a comprehensive, interdisciplinary description of C and N fluxes between the atmosphere and terrestrial biosphere, issues related to C and N management in different ecosystems and their implications for the environment and global climate change, and the approaches to mitigate emission of GHGs. This unique volume presents comprehensive literature drawn from books, journals, reports, symposia proceeding and internet sources to document interrelationships between different aspects of C and N cycling in terrestrial ecosystems. Following an introductory chapter, Chapter 1 presents distribution of C and N in the various terrestrial pools, with special emphasis on storage in plants and soils. Chapter 2 presents the basics of C and N cycling processes and a generalized overview of fluxes in terrestrial ecosystems so as to develop an understanding of the complex interrelationships among different processes and the emission pathways, which are discussed in subsequent chapters. Soils, particularly soil organic matter, play an important role in the bidirectional flow of C and N in terrestrial ecosystems. Therefore, knowledge about the composition and characteristics of soil organic matter, and its role in influencing soil functions is essential to exploit synergies between management practices, GHG mitigation and sustainable productivity. While Chapter 3 presents physical, chemical and morphological characterization of soil organic matter, Chapter 4 enunciates the influence of SOM on soil quality and its ability to perform ecosystem functions. To complement the information provided in Chapter 1 on C and N forms, Chapter 5 presents the transformations of organic and inorganic forms of carbon and nitrogen in soils and their role in influencing C and N fluxes between soils and atmosphere. The impact of anthropogenic activities, particularly land use and land use changes and agricultural management on C and N dynamics is presented in Chapter 6. Chapter 7 discusses leaching of reactive C and N forms from soils and contamination of groundwater. Chapter 8 provides a detailed description of bidirectional biosphere-atmosphere interactions with current estimates of GHG emissions, their sources, governing variables and the mitigation options. Finally, Chapter 9 presents modeling approaches adopted to simulate various components of C and N cycling processes. The use of models to upscale measurements and generate scenarios on a regional and global scale vis-à-vis management options are discussed.

We are thankful to the German Research Foundation (Deutsche Forschungsgemeinschaft) for funding the stay of D.K. Benbi at Braunschweig Technical University. We appreciate our families: Alexandra, Raphaela and Petra (R. Nieder), and Adwitheya and Meenu (D.K. Benbi) for their patience and understanding during the preparation of this book. We are grateful to Hans P. Dauck for help in the preparation of illustrations.

> R. Nieder D.K. Benbi

Contents

Preface				V		
Introductio	n			1		
Chapter 1	Carbon and Nitrogen Pools in Terrestrial Ecosystems					
	1.1		and Quantities of Carbon and Nitrogen			
			rth	5		
		1.1.1	Carbon	5		
		1.1.2	Nitrogen	7		
	1.2		n and Nitrogen in Terrestrial Phytomass	8		
		1.2.1	······································			
			Natural Ecosystem Types	9		
		1.2.2	· · · · · · · · · · · · · · · ·	20		
		1.2.3				
			in Different Climatic Zones	21 22		
	1.3		Carbon and Nitrogen in Soils			
		1.3.1	Global Soil Organic Carbon and Nitrogen			
			Pools	22		
		1.3.2	Global Soil Inorganic Carbon and Nitrogen			
			Pools	36		
			l Vegetation-Soil Organic Matter			
		Interre	elationships	41		
Chapter 2	Car	Carbon and Nitrogen Cycles in Terrestrial Ecosystems				
	2.1	The G	lobal Carbon Cycle	45		
		2.1.1	Biosphere-Atmosphere Exchange			
			of Carbon Dioxide	45		
		2.1.2	Biosphere-Atmosphere Exchange of Methane,			
			Carbon Monoxide and Other C-Containing			
			Gases	47		
		2.1.3	Ocean-Atmosphere Exchange of Carbon			
			Dioxide	47		

			Transport of Carbon to Oceans via Fluvial	
			Systems	48
	2.2		obal Nitrogen Cycle	49
			N ₂ Fixation by Lightning	49
			Biological N ₂ Fixation	49
		2.2.3	Ammonia Production with the Haber-Bosch	
			Process	51
		2.2.4	Atmospheric N Depositions	52
		2.2.5	Emissions of NO_x , N_2O , N_2 , NH_3 and	
			Organic N	54
			Leaching of Nitrogen to Groundwater	55
		2.2.7	Transport of Nitrogen to Oceans by Rivers	55
		2.2.8	Ocean N Budgets	56
		2.2.9	Summary of the Major Global N Fluxes	57
	2.3	Carbon	and Nitrogen Cycling in Soils	58
		2.3.1	Carbon and Nitrogen Cycling in Upland Soils	59
		2.3.2	Carbon and Nitrogen Cycling in Wetland Soils	73
	2.4		Climate Change and C and N Cycling	79
	a u	• •		. 81
Chapter 3	Soil Organic Matter Characterization			
	3.1		al Characterization of Soil Organic Matter	82
			Non-Humic Substances	83
		3.1.2	Humic Substances	85
	3.2	Physica	l Characterization of Soil Organic Matter	97
		3.2.1	Particulate Organic Matter	98
		3.2.2	Organomineral Complexes	100
	3.3	Morpho	ological Characterization of Soil	
		Organic	e Matter	104
		3.3.1	Classification of Terrestrial Humus Forms	104
		3.3.2	Characterization of Terrestrial Humus Forms	106
		3.3.3	Humus Form Development in a Forest	
			Succession	110
		3.3.4	Ecological Features of Humus Forms	110
Chapter 4	Org	anic Ma	tter and Soil Quality	. 113
-	4.1		ality	
	1.1	-	Definition and Concept	
	4.2		of SOM on Soil Physical, Chemical	
	1.2		ological Properties	117
			Physical Properties	118
			Chemical Properties	122
			Biological Properties	122
	4.3		ion of Organic Components as Soil	120
	ч.)		Indicators	130
		Quanty	multatols	150

Contents

		4.3.1	Soil Organic Matter	130		
		4.3.2	Soil Microbial Biomass	132		
		4.3.3	Soil Enzymes	132		
	4.4		f Combined Biological Parameters for Soil			
			ty Estimation	133		
		4.4.1	Indexes Developed from Two Measured			
			Parameters	133		
		4.4.2	Indexes Developed from More than Two	100		
		1.1.2	Measured Parameters	134		
			Weasured Farameters	154		
Chapter 5	Carbon and Nitrogen Transformations in Soils					
	5.1	Trans	formations of Organic Components	138		
		5.1.1	Methods of Mineralization-Immobilization			
			Measurement	139		
		5.1.2	Mineralization-Immobilization Measurements			
			in the Field	142		
		5.1.3	Results from ¹⁵ N Field Studies	145		
		5.1.4	Long-Term C and N Mineralization			
			and Accumulation	148		
	5.2	Trans	formations of Inorganic Components	148		
		5.2.1	Formation of Secondary Carbonates	148		
		5.2.2	Nitrification	152		
		5.2.3	Fixation and Defixation of Ammonium	156		
Chapter 6	Ant	Anthropogenic Activities and Soil Carbon				
chapter o			en	. 161		
	6.1	Land	Use Changes	161		
	011	6.1.1	•	101		
		0.111	and Its Global Change	161		
		6.1.2	Change in SOC and SON Following Land	101		
		0.1.2	Conversion	172		
		6.1.3	Land Use Changes and Greenhouse	1/2		
		0.1.5	Gas Emissions	187		
		6.1.4	Fire Regimes	192		
	6.2		ultural Management	194		
	0.2	6.2.1	Soil Tillage	194		
			Fertilization	200		
		6.2.2		200		
		6.2.5 6.2.4	Introduction of Fallow Systems Crop Rotation Effects	203		
		0.2.4	÷	207		
	62	Feer	estam Disturbanca	200		
	6.3	•	stem Disturbance	209		
	6.3	6.3.1	Erosion and Deposition Effects	209		
	6.3	6.3.1 6.3.2	Erosion and Deposition Effects Mine Spoil Reclamation	209 212		
	6.3	6.3.1	Erosion and Deposition Effects	209		

Chapter 7	Leaching Losses and Groundwater Pollution			219	
	7.1	Dissolved Organic Carbon		220	
	7.2		rganic Nitrogen	223	
	7.3		hing	226	
			cing Leaching Losses	230	
Chapter 8	Bidirectional Biosphere-Atmosphere Interactions				
	8.1	Atmospheric	Nitrogen Depositions	236	
		8.1.1 Wet a	and Dry Deposition	236	
		8.1.2 Effect	t of N Deposition on Ecosystems	240	
	8.2	Carbon Fixa	tion via Photosynthesis	243	
		8.2.1 Photo	osynthetic Pathways	243	
		8.2.2 Glob	al Distribution of C_3 and C_4 Pathways	244	
			onse of C_3 and C_4 Pathways to Increasing		
			ospheric CO ₂ Concentration	245	
	8.3		Fixation	246	
			xation by Non-symbiotic Bacteria	247	
		2	xation by Symbiotic Bacteria	248	
			al Estimates of Biological N ₂ Fixation	250	
	8.4	Carbon Dioxide Emission		251	
		8.4.1 Carb	on Dioxide Emissions from Biomass		
		Burn	ing and Soils	254	
			on Dioxide Emission Mitigation Options	255	
			of Forests in CO ₂ Mitigation	256	
			tial for C Sequestration by Agriculture	260	
	8.5	Methane Emission		265	
			ane Emission from Rice Agriculture	268	
			ane Production in Rice Soils	269	
		8.5.3 Facto	ors Regulating Methane Emission		
			Rice Fields	271	
			ation Options for Agricultural Emission		
			ethane	273	
	8.6	Emission of	Oxides of Nitrogen: N ₂ O and NO	276	
			us Oxide Emissions	276	
		8.6.2 Nitrie	c Oxide Emissions	281	
		8.6.3 Facto	ors Regulating Emission of N ₂ O and NO _x	284	
			gen Oxide Emission Mitigation Options	291	
	8.7		nission	291	
			nonia Emission Mitigation Options	294	
			nonia Emission from Plants	294	
	8.8		ate Change and Crop Yields	295	
			ceted Demand of Crop Yields	295	
		-	ence of Climate Change on Crop Yields	296	
			ntial to Increase Global Production	297	