SOLD MECHANICS

WILLIAM F. HOSFORD

CAMBRIDGE www.cambridge.org/9780521192293

This page intentionally left blank

SOLID MECHANICS

This is a textbook for courses in departments of Mechanical, Civil and Aeronautical Engineering commonly called strength of materials or mechanics of materials. The intent of this book is to provide a background in the mechanics of solids for students of mechanical engineering while limiting the information on why materials behave as they do. It is assumed that the students have already had courses covering materials science and basic statics. Much of the material is drawn from another book by the author, *Mechanical Behavior of Materials*. To make the text suitable for Mechanical Engineers, the chapters on slip, dislocations, twinning, residual stresses, and hardening mechanisms have been eliminated and the treatments in other chapters about ductility, viscoelasticity, creep, ceramics, and polymers have been simplified.

William Hosford is a Professor Emeritus of Materials Science at the University of Michigan. He is the author of numerous research and publications books, including *Materials for Engineers; Metal Forming* third edition (with Robert M. Caddell); *Materials Science: An Intermediate Text; Reporting Results* (with David C. Van Aken); *Mechanics of Crystals and Textured Polycrystals; Mechanical Metallurgy*; and *Wilderness Canoe Tripping*.

Solid Mechanics

William Hosford

University of Michigan, Emeritus

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Dubai, Tokyo

Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521192293

© William Hosford 2010

This publication is in copyright. Subject to statutory exception and to the provision of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published in print format 2010

ISBN-13 978-0-511-71247-0 eBook (NetLibrary)

ISBN-13 978-0-521-19229-3 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of urls for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Preface		page x
1	Stress and Strain	1
	Introduction	1
	Stress	2
	Sign Convention	3
	Transformation of Axes	4
	Principal Stresses	6
	Mohr's Stress Circles	6
	Strains	9
	Small Strains	11
	Transformation of Axes	12
	Mohr's Strain Circles	14
	Force and Moment Balances	15
	Common Boundary Conditions	17
	Note	18
	Problems	18
2	Elasticity	
	Introduction	21
	Isotropic Elasticity	21
	Variation of Young's Modulus	24
	Isotropic Thermal Expansion	26
	Notes	27
	Problems	29
3	Mechanical Testing	
	Introduction	31
	Tensile Testing	31
	Ductility	35
	True Stress and Strain	37

	Temperature Rise	38
	Compression Test	38
	Plane-Strain Compression and Tension	42
	Biaxial Tension (Hydraulic Bulge Test)	43
	Torsion Test	45
	Bend Tests	47
	Hardness Tests	49
	Notes	52
	Problems	53
4	Strain Hardening of Metals	57
	Introduction	57
	Mathematical Approximations	57
	Power-Law Approximation	59
	Necking	59
	Work per Volume	62
	Localization of Strain at Defects	62
	Notes	64
	Problems	64
5	Plasticity Theory	67
	Introduction	67
	Yield Criteria	67
	Tresca (maximum shear stress criterion)	68
	Von Mises Criterion	69
	Flow Rules	71
	Principle of Normality	73
	Effective Stress and Effective Strain	74
	Other Isotropic Yield Criteria	77
	Effect of Strain Hardening on the Yield Locus	78
	Notes	78
	Problems	80
6	Strain-Rate and Temperature Dependence of Flow Stress	84
	Introduction	84
	Strain-Rate Dependence of Flow Stress	84
	Superplasticity	87
	Combined Strain and Strain-Rate Effects	92
	Temperature Dependence	93
	Combined Temperature and Strain-Rate Effects	93
	Hot Working	97
	Notes	98
	Problems	99

7	Viscoelasticity	102
	Introduction	102
	Rheological Models	102
	Series Combination of a Spring and Dashpot	103
	Parallel Combination of Spring and Dashpot	104
	Combined Parallel-Series Model	105
	More Complex Models	107
	Damping	107
	Natural Decay	108
	Elastic Modulus – Relaxed vs. Unrelaxed	109
	Thermoelastic Effect	110
	Other Damping Mechanisms	112
	Notes Problems	113 114
	FIODEIIIS	114
8	Creep and Stress Rupture	• • 117
	Introduction	117
	Creep Mechanisms	117
	Cavitation	121
	Rupture vs. Creep	122
	Extrapolation Schemes	123
	Notes	126
	Problems	126
9	Ductility and Fracture	130
	Introduction	130
	Ductile Fracture	132
	Void Failure Criterion	136
	Brittle Fracture	136
	Impact Energy	137
	Notes	141
	Problems	142
10	Fracture Mechanics	143
	Introduction	143
	Introduction	145
	Theoretical Fracture Strength	143
	Theoretical Fracture Strength	143
	Theoretical Fracture Strength Stress Concentration	143 145
	Theoretical Fracture Strength Stress Concentration Griffith and Orowan Theories	143 145 146
	Theoretical Fracture Strength Stress Concentration Griffith and Orowan Theories Fracture Modes Irwin's Fracture Analysis Plastic Zone Size	143 145 146 147 148 150
	Theoretical Fracture Strength Stress Concentration Griffith and Orowan Theories Fracture Modes Irwin's Fracture Analysis	143 145 146 147 148

	Fracture Mechanics in Design	154
	Compact Tensile Specimens	155
	The <i>J</i> -Integral	156
	Notes	158
	Problems	158
11	Fatigue	161
	Introduction	161
	Surface Observations	161
	Nomenclature	163
	S-N Curves	164
	Effect of Mean Stress	166
	The Palmgren-Miner Rule	168
	Stress Concentration	169
	Surface Conditions	171
	Design Estimates	173
	Metallurgical Variables	174
	Strains to Failure	175
	Crack Propagation	177
	Cyclic Stress-Strain Behavior	180
	Temperature and Cycling Rate Effects	181
	Fatigue Testing	182
	Design Considerations	182
	Notes	183
	Problems	184
12	Polymers and Ceramics	187
	Introduction	187
	Elasticity of Polymers	187
	Glass Transition	187
	Time Dependence of Properties	189
	Rubber Elasticity	190
	Yielding	191
	Effect of Pressure	194
	Crazing	194
	Fracture	195
	Ceramics	195
	Weibull Analysis	195
	Porosity	196
	Fracture Toughness	198
	Toughening of Ceramics	199
	Glasses	199
	Thermally Induced Stresses	199
	Glassy Metals	201